1 | /* |
---|
2 | ----------------------------------------------------------------------------- |
---|
3 | This source file is part of OGRE |
---|
4 | (Object-oriented Graphics Rendering Engine) |
---|
5 | For the latest info, see http://www.ogre3d.org/ |
---|
6 | |
---|
7 | Copyright (c) 2006 Torus Knot Software Ltd |
---|
8 | Copyright (c) 2006 Matthias Fink, netAllied GmbH <matthias.fink@web.de> |
---|
9 | Also see acknowledgements in Readme.html |
---|
10 | |
---|
11 | This program is free software; you can redistribute it and/or modify it under |
---|
12 | the terms of the GNU Lesser General Public License as published by the Free Software |
---|
13 | Foundation; either version 2 of the License, or (at your option) any later |
---|
14 | version. |
---|
15 | |
---|
16 | This program is distributed in the hope that it will be useful, but WITHOUT |
---|
17 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
---|
18 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
---|
19 | |
---|
20 | You should have received a copy of the GNU Lesser General Public License along with |
---|
21 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
---|
22 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
---|
23 | http://www.gnu.org/copyleft/lesser.txt. |
---|
24 | |
---|
25 | You may alternatively use this source under the terms of a specific version of |
---|
26 | the OGRE Unrestricted License provided you have obtained such a license from |
---|
27 | Torus Knot Software Ltd. |
---|
28 | ----------------------------------------------------------------------------- |
---|
29 | */ |
---|
30 | |
---|
31 | #include "OgreStableHeaders.h" |
---|
32 | #include "OgreShadowCameraSetupLiSPSM.h" |
---|
33 | #include "OgreRoot.h" |
---|
34 | #include "OgreSceneManager.h" |
---|
35 | #include "OgreCamera.h" |
---|
36 | #include "OgreLight.h" |
---|
37 | #include "OgrePlane.h" |
---|
38 | #include "OgreConvexBody.h" |
---|
39 | |
---|
40 | namespace Ogre |
---|
41 | { |
---|
42 | |
---|
43 | |
---|
44 | LiSPSMShadowCameraSetup::LiSPSMShadowCameraSetup(void) |
---|
45 | : mOptAdjustFactor(0.1f), mUseSimpleNOpt(true) |
---|
46 | { |
---|
47 | } |
---|
48 | //----------------------------------------------------------------------- |
---|
49 | LiSPSMShadowCameraSetup::~LiSPSMShadowCameraSetup(void) |
---|
50 | { |
---|
51 | } |
---|
52 | //----------------------------------------------------------------------- |
---|
53 | Matrix4 LiSPSMShadowCameraSetup::calculateLiSPSM(const Matrix4& lightSpace, |
---|
54 | const PointListBody& bodyB, const PointListBody& bodyLVS, |
---|
55 | const SceneManager& sm, const Camera& cam, const Light& light) const |
---|
56 | { |
---|
57 | // set up bodyB AAB in light space |
---|
58 | AxisAlignedBox bodyBAAB_ls; |
---|
59 | for (size_t i = 0; i < bodyB.getPointCount(); ++i) |
---|
60 | { |
---|
61 | bodyBAAB_ls.merge(lightSpace * bodyB.getPoint(i)); |
---|
62 | } |
---|
63 | |
---|
64 | // near camera point in light space |
---|
65 | const Vector3 e_ls = lightSpace * getNearCameraPoint_ws(cam.getViewMatrix(), bodyLVS); |
---|
66 | |
---|
67 | // C_start has x and y of e and z from the bodyABB_ls (we look down the negative z axis, so take the maximum z value) |
---|
68 | const Vector3 C_start_ls(e_ls.x, e_ls.y, bodyBAAB_ls.getMaximum().z); |
---|
69 | |
---|
70 | // calculate the optimal distance between origin and near plane |
---|
71 | Real n_opt; |
---|
72 | |
---|
73 | if (mUseSimpleNOpt) |
---|
74 | n_opt = calculateNOptSimple(bodyLVS, cam); |
---|
75 | else |
---|
76 | n_opt = calculateNOpt(lightSpace, bodyBAAB_ls, bodyLVS, cam); |
---|
77 | |
---|
78 | // in case n_opt is null, uniform shadow mapping will be done |
---|
79 | if (n_opt <= 0.0) |
---|
80 | { |
---|
81 | return Matrix4::IDENTITY; |
---|
82 | } |
---|
83 | |
---|
84 | // calculate the projection center C which is n units behind the near plane of P |
---|
85 | // we look into the negative z direction so add n |
---|
86 | const Vector3 C(C_start_ls + n_opt * Vector3::UNIT_Z); |
---|
87 | |
---|
88 | // set up a transformation matrix to transform the light space to its new origin |
---|
89 | Matrix4 lightSpaceTranslation(Matrix4::IDENTITY); |
---|
90 | lightSpaceTranslation.setTrans(-C); |
---|
91 | |
---|
92 | // range from bMin to bMax; d = |B_z_far - B_z_near| |
---|
93 | Real d = Math::Abs(bodyBAAB_ls.getMaximum().z - bodyBAAB_ls.getMinimum().z); |
---|
94 | |
---|
95 | // set up the LiSPSM perspective transformation |
---|
96 | // build up frustum to map P onto the unit cube with (-1/-1/-1) and (+1/+1/+1) |
---|
97 | Matrix4 P = buildFrustumProjection(-1, 1, -1, 1, n_opt, n_opt + d); |
---|
98 | |
---|
99 | return P * lightSpaceTranslation; |
---|
100 | } |
---|
101 | //----------------------------------------------------------------------- |
---|
102 | Real LiSPSMShadowCameraSetup::calculateNOpt(const Matrix4& lightSpace, |
---|
103 | const AxisAlignedBox& bodyBABB_ls, const PointListBody& bodyLVS, |
---|
104 | const Camera& cam) const |
---|
105 | { |
---|
106 | // get inverse light space matrix |
---|
107 | Matrix4 invLightSpace = lightSpace.inverse(); |
---|
108 | |
---|
109 | // get view matrix |
---|
110 | const Matrix4& viewMatrix = cam.getViewMatrix(); |
---|
111 | |
---|
112 | // calculate z0_ls |
---|
113 | const Vector3 e_ws = getNearCameraPoint_ws(viewMatrix, bodyLVS); |
---|
114 | const Vector3 z0_ls = calculateZ0_ls(lightSpace, e_ws, bodyBABB_ls.getMaximum().z, cam); |
---|
115 | |
---|
116 | // z1_ls has the same x and y values as z0_ls and the minimum z values of bodyABB_ls |
---|
117 | const Vector3 z1_ls = Vector3(z0_ls.x, z0_ls.y, bodyBABB_ls.getMinimum().z); |
---|
118 | |
---|
119 | // world |
---|
120 | const Vector3 z0_ws = invLightSpace * z0_ls; |
---|
121 | const Vector3 z1_ws = invLightSpace * z1_ls; |
---|
122 | |
---|
123 | // eye |
---|
124 | const Vector3 z0_es = viewMatrix * z0_ws; |
---|
125 | const Vector3 z1_es = viewMatrix * z1_ws; |
---|
126 | |
---|
127 | const Real z0 = z0_es.z; |
---|
128 | const Real z1 = z1_es.z; |
---|
129 | |
---|
130 | // check if we have to do uniform shadow mapping |
---|
131 | if ((z0 < 0 && z1 > 0) || |
---|
132 | (z1 < 0 && z0 > 0)) |
---|
133 | { |
---|
134 | // apply uniform shadow mapping |
---|
135 | return 0.0; |
---|
136 | } |
---|
137 | return cam.getNearClipDistance() + Math::Sqrt(z0 * z1) * mOptAdjustFactor; |
---|
138 | } |
---|
139 | //----------------------------------------------------------------------- |
---|
140 | Real LiSPSMShadowCameraSetup::calculateNOptSimple(const PointListBody& bodyLVS, |
---|
141 | const Camera& cam) const |
---|
142 | { |
---|
143 | // get view matrix |
---|
144 | const Matrix4& viewMatrix = cam.getViewMatrix(); |
---|
145 | |
---|
146 | // calculate e_es |
---|
147 | const Vector3 e_ws = getNearCameraPoint_ws(viewMatrix, bodyLVS); |
---|
148 | const Vector3 e_es = viewMatrix * e_ws; |
---|
149 | |
---|
150 | // according to the new formula (mainly for directional lights) |
---|
151 | // n_opt = zn + sqrt(z0 * z1); |
---|
152 | // zn is set to Abs(near eye point) |
---|
153 | // z0 is set to the near camera clip distance |
---|
154 | // z1 is set to the far camera clip distance |
---|
155 | return (Math::Abs(e_es.z) + Math::Sqrt(cam.getNearClipDistance() * cam.getFarClipDistance())) * mOptAdjustFactor; |
---|
156 | } |
---|
157 | //----------------------------------------------------------------------- |
---|
158 | Vector3 LiSPSMShadowCameraSetup::calculateZ0_ls(const Matrix4& lightSpace, |
---|
159 | const Vector3& e, Real bodyB_zMax_ls, const Camera& cam) const |
---|
160 | { |
---|
161 | // z0_ls lies on the intersection point between the planes 'bodyB_ls near plane |
---|
162 | // (z = bodyB_zNear_ls)' and plane with normal UNIT_X where e_ls lies upon (x = e_ls_x) |
---|
163 | // and the camera's near clipping plane (ls). We are looking towards the negative |
---|
164 | // z-direction, so bodyB_zNear_ls equals bodyB_zMax_ls. |
---|
165 | |
---|
166 | const Vector3& camDir = cam.getDerivedDirection(); |
---|
167 | const Vector3 e_ls = lightSpace * e; |
---|
168 | |
---|
169 | // set up a plane with the camera direction as normal and e as a point on the plane |
---|
170 | Plane plane(camDir, e); |
---|
171 | |
---|
172 | plane = lightSpace * plane; |
---|
173 | |
---|
174 | // try to intersect plane with a ray from origin V3(e_ls_x, 0.0, bodyB_zNear_ls)T |
---|
175 | // and direction +/- UNIT_Y |
---|
176 | Ray ray(Vector3(e_ls.x, 0.0, bodyB_zMax_ls), Vector3::UNIT_Y); |
---|
177 | std::pair< bool, Real > intersect = ray.intersects(plane); |
---|
178 | |
---|
179 | // we got an intersection point |
---|
180 | if (intersect.first == true) |
---|
181 | { |
---|
182 | return ray.getPoint(intersect.second); |
---|
183 | } |
---|
184 | else |
---|
185 | { |
---|
186 | // try the other direction |
---|
187 | ray = Ray(Vector3(e_ls.x, 0.0, bodyB_zMax_ls), Vector3::NEGATIVE_UNIT_Y); |
---|
188 | std::pair< bool, Real > intersect = ray.intersects(plane); |
---|
189 | |
---|
190 | // we got an intersection point |
---|
191 | if (intersect.first == true) |
---|
192 | { |
---|
193 | return ray.getPoint(intersect.second); |
---|
194 | } |
---|
195 | else |
---|
196 | { |
---|
197 | // failure! |
---|
198 | return Vector3(0.0, 0.0, 0.0); |
---|
199 | } |
---|
200 | } |
---|
201 | } |
---|
202 | //----------------------------------------------------------------------- |
---|
203 | Matrix4 LiSPSMShadowCameraSetup::buildFrustumProjection(Real left, Real right, |
---|
204 | Real bottom, Real top, Real near, Real far) const |
---|
205 | { |
---|
206 | Real m00 = 2 * near / (right - left), |
---|
207 | m02 = (right + left) / (right - left), |
---|
208 | m11 = 2 * near / (top - bottom), |
---|
209 | m12 = (top + bottom) / (top - bottom), |
---|
210 | m22 = -(far + near) / (far - near), |
---|
211 | m23 = -2 * far * near / (far - near), |
---|
212 | m32 = -1; |
---|
213 | |
---|
214 | Matrix4 m(m00, 0.0, m02, 0.0, |
---|
215 | 0.0, m11, m12, 0.0, |
---|
216 | 0.0, 0.0, m22, m23, |
---|
217 | 0.0, 0.0, m32, 0.0); |
---|
218 | |
---|
219 | return m; |
---|
220 | } |
---|
221 | //----------------------------------------------------------------------- |
---|
222 | void LiSPSMShadowCameraSetup::getShadowCamera (const SceneManager *sm, const Camera *cam, |
---|
223 | const Viewport *vp, const Light *light, Camera *texCam) const |
---|
224 | { |
---|
225 | // check availability - viewport not needed |
---|
226 | OgreAssert(sm != NULL, "SceneManager is NULL"); |
---|
227 | OgreAssert(cam != NULL, "Camera (viewer) is NULL"); |
---|
228 | OgreAssert(light != NULL, "Light is NULL"); |
---|
229 | OgreAssert(texCam != NULL, "Camera (texture) is NULL"); |
---|
230 | mLightFrustumCameraCalculated = false; |
---|
231 | |
---|
232 | |
---|
233 | // calculate standard shadow mapping matrix |
---|
234 | Matrix4 LView, LProj; |
---|
235 | calculateShadowMappingMatrix(*sm, *cam, *light, &LView, &LProj, NULL); |
---|
236 | |
---|
237 | // build scene bounding box |
---|
238 | const VisibleObjectsBoundsInfo& visInfo = sm->getShadowCasterBoundsInfo(light); |
---|
239 | AxisAlignedBox sceneBB = visInfo.aabb; |
---|
240 | sceneBB.merge(sm->getVisibleObjectsBoundsInfo(cam).aabb); |
---|
241 | sceneBB.merge(cam->getDerivedPosition()); |
---|
242 | |
---|
243 | // in case the sceneBB is empty (e.g. nothing visible to the cam) simply |
---|
244 | // return the standard shadow mapping matrix |
---|
245 | if (sceneBB.isNull()) |
---|
246 | { |
---|
247 | texCam->setCustomViewMatrix(true, LView); |
---|
248 | texCam->setCustomProjectionMatrix(true, LProj); |
---|
249 | return; |
---|
250 | } |
---|
251 | |
---|
252 | // calculate the intersection body B |
---|
253 | mPointListBodyB.reset(); |
---|
254 | calculateB(*sm, *cam, *light, sceneBB, &mPointListBodyB); |
---|
255 | |
---|
256 | // in case the bodyB is empty (e.g. nothing visible to the light or the cam) |
---|
257 | // simply return the standard shadow mapping matrix |
---|
258 | if (mPointListBodyB.getPointCount() == 0) |
---|
259 | { |
---|
260 | texCam->setCustomViewMatrix(true, LView); |
---|
261 | texCam->setCustomProjectionMatrix(true, LProj); |
---|
262 | return; |
---|
263 | } |
---|
264 | |
---|
265 | // transform to light space: y -> -z, z -> y |
---|
266 | LProj = msNormalToLightSpace * LProj; |
---|
267 | |
---|
268 | // calculate LVS so it does not need to be calculated twice |
---|
269 | // calculate the body L \cap V \cap S to make sure all returned points are in |
---|
270 | // front of the camera |
---|
271 | calculateLVS(*sm, *cam, *light, sceneBB, &mPointListBodyLVS); |
---|
272 | |
---|
273 | // fetch the viewing direction |
---|
274 | const Vector3 viewDir = getLSProjViewDir(LProj * LView, *cam, mPointListBodyLVS); |
---|
275 | |
---|
276 | // The light space will be rotated in such a way, that the projected light view |
---|
277 | // always points upwards, so the up-vector is the y-axis (we already prepared the |
---|
278 | // light space for this usage).The transformation matrix is set up with the |
---|
279 | // following parameters: |
---|
280 | // - position is the origin |
---|
281 | // - the view direction is the calculated viewDir |
---|
282 | // - the up vector is the y-axis |
---|
283 | LProj = buildViewMatrix(Vector3::ZERO, viewDir, Vector3::UNIT_Y) * LProj; |
---|
284 | |
---|
285 | // calculate LiSPSM projection |
---|
286 | LProj = calculateLiSPSM(LProj * LView, mPointListBodyB, mPointListBodyLVS, *sm, *cam, *light) * LProj; |
---|
287 | |
---|
288 | // map bodyB to unit cube |
---|
289 | LProj = transformToUnitCube(LProj * LView, mPointListBodyB) * LProj; |
---|
290 | |
---|
291 | // transform from light space to normal space: y -> z, z -> -y |
---|
292 | LProj = msLightSpaceToNormal * LProj; |
---|
293 | |
---|
294 | // LView = Lv^-1 |
---|
295 | // LProj = Switch_{-ls} * FocusBody * P * L_r * Switch_{ls} * L_p |
---|
296 | texCam->setCustomViewMatrix(true, LView); |
---|
297 | texCam->setCustomProjectionMatrix(true, LProj); |
---|
298 | } |
---|
299 | |
---|
300 | } |
---|
301 | |
---|