1 | /* |
---|
2 | ----------------------------------------------------------------------------- |
---|
3 | This source file is part of OGRE |
---|
4 | (Object-oriented Graphics Rendering Engine) |
---|
5 | For the latest info, see http://www.ogre3d.org/ |
---|
6 | |
---|
7 | Copyright (c) 2006 Torus Knot Software Ltd |
---|
8 | Also see acknowledgements in Readme.html |
---|
9 | |
---|
10 | This program is free software; you can redistribute it and/or modify it under |
---|
11 | the terms of the GNU Lesser General Public License as published by the Free Software |
---|
12 | Foundation; either version 2 of the License, or (at your option) any later |
---|
13 | version. |
---|
14 | |
---|
15 | This program is distributed in the hope that it will be useful, but WITHOUT |
---|
16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
---|
17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
---|
18 | |
---|
19 | You should have received a copy of the GNU Lesser General Public License along with |
---|
20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
---|
21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
---|
22 | http://www.gnu.org/copyleft/lesser.txt. |
---|
23 | ----------------------------------------------------------------------------- |
---|
24 | */ |
---|
25 | |
---|
26 | #include "OgreStableHeaders.h" |
---|
27 | #include "OgreCommon.h" |
---|
28 | #include "OgreSceneManager.h" |
---|
29 | #include "OgreLight.h" |
---|
30 | #include "OgreShadowCameraSetupPlaneOptimal.h" |
---|
31 | #include "OgreNumerics.h" |
---|
32 | #include "OgreCamera.h" |
---|
33 | #include "OgreViewport.h" |
---|
34 | |
---|
35 | |
---|
36 | namespace Ogre |
---|
37 | { |
---|
38 | // -------------------------------------------------------------------- |
---|
39 | Matrix4 PlaneOptimalShadowCameraSetup::computeConstrainedProjection( |
---|
40 | const Vector4& pinhole, |
---|
41 | const std::vector<Vector4>& fpoint, |
---|
42 | const std::vector<Vector2>& constraint) const |
---|
43 | { |
---|
44 | // NOTE: will assume the z coordinates should be decided such that |
---|
45 | // the first 3 points (in fpoint) will have post projective |
---|
46 | // z coordinates of about +1 and the 4th (in fpoint) will have a |
---|
47 | // post projective z coordinate of about -1. |
---|
48 | |
---|
49 | // TODO: could use SVD to avoid arbitrarily choosing one |
---|
50 | // matrix element to be 1.0 (and thereby fix the scale). |
---|
51 | |
---|
52 | Matrix4 ret; |
---|
53 | int i; |
---|
54 | bool incrPrecision = false; // use to control numerical solving |
---|
55 | |
---|
56 | if(fpoint.size() < 4 || constraint.size() < 4) { |
---|
57 | return Matrix4::IDENTITY; |
---|
58 | } |
---|
59 | |
---|
60 | // allocate memory |
---|
61 | PreciseReal **mat = NULL; |
---|
62 | PreciseReal **backmat = NULL; |
---|
63 | { |
---|
64 | mat = new PreciseReal*[11]; |
---|
65 | if(incrPrecision) |
---|
66 | backmat = new PreciseReal*[11]; |
---|
67 | for(i=0; i<11; i++) |
---|
68 | { |
---|
69 | mat[i] = new PreciseReal[11]; |
---|
70 | if(incrPrecision) |
---|
71 | backmat[i] = new PreciseReal[11]; |
---|
72 | } |
---|
73 | } |
---|
74 | |
---|
75 | // set up linear system to solve for all rows of projective matrix |
---|
76 | // except for the 3rd which corresponds to mapping of z values |
---|
77 | |
---|
78 | // we choose a nonzero element of the last row to set to the arbitrary |
---|
79 | // constant 1.0. |
---|
80 | int nzind = 3; |
---|
81 | PreciseReal col[11]; |
---|
82 | PreciseReal backcol[11]; |
---|
83 | |
---|
84 | // fill in light position constraints |
---|
85 | mat[0][0] = pinhole.x; |
---|
86 | mat[0][1] = pinhole.y; |
---|
87 | mat[0][2] = pinhole.z; |
---|
88 | mat[0][3] = pinhole.w; |
---|
89 | for(i=4; i<11; i++) |
---|
90 | mat[0][i] = 0.0; |
---|
91 | col[0] = 0.0; |
---|
92 | |
---|
93 | for(i=0; i<11; i++) |
---|
94 | mat[1][i] = 0.0; |
---|
95 | mat[1][4] = pinhole.x; |
---|
96 | mat[1][5] = pinhole.y; |
---|
97 | mat[1][6] = pinhole.z; |
---|
98 | mat[1][7] = pinhole.w; |
---|
99 | col[1] = 0.0; |
---|
100 | |
---|
101 | PreciseReal larr[4]; |
---|
102 | larr[0] = pinhole.x; |
---|
103 | larr[1] = pinhole.y; |
---|
104 | larr[2] = pinhole.z; |
---|
105 | larr[3] = pinhole.w; |
---|
106 | for(i=0; i<8; i++) |
---|
107 | mat[2][i] = 0.0; |
---|
108 | int ind = 8; |
---|
109 | for(i=0; i<4; i++) |
---|
110 | { |
---|
111 | if(nzind == i) |
---|
112 | continue; |
---|
113 | mat[2][ind++] = larr[i]; |
---|
114 | } |
---|
115 | col[2] = -larr[nzind]; |
---|
116 | |
---|
117 | // fill in all the other constraints |
---|
118 | int row=3; |
---|
119 | for(i=0; i<4; i++) |
---|
120 | { |
---|
121 | int j; |
---|
122 | larr[0] = fpoint[i].x; |
---|
123 | larr[1] = fpoint[i].y; |
---|
124 | larr[2] = fpoint[i].z; |
---|
125 | larr[3] = fpoint[i].w; |
---|
126 | |
---|
127 | // lexel s coordinate constraint |
---|
128 | for(j=0; j<4; j++) |
---|
129 | mat[row][j] = larr[j]; |
---|
130 | for(j=4; j<8; j++) |
---|
131 | mat[row][j] = 0.0; |
---|
132 | ind=8; |
---|
133 | for(j=0; j<4; j++) |
---|
134 | { |
---|
135 | if(nzind==j) |
---|
136 | continue; |
---|
137 | mat[row][ind++] = larr[j] * (-constraint[i].x); |
---|
138 | } |
---|
139 | col[row] = larr[nzind] * constraint[i].x; |
---|
140 | ++row; |
---|
141 | |
---|
142 | // lexel t coordinate constraint |
---|
143 | for(j=0; j<4; j++) |
---|
144 | mat[row][j] = 0.0; |
---|
145 | for(j=4; j<8; j++) |
---|
146 | mat[row][j] = larr[j-4]; |
---|
147 | |
---|
148 | ind=8; |
---|
149 | for(j=0; j<4; j++) |
---|
150 | { |
---|
151 | if(nzind==j) |
---|
152 | continue; |
---|
153 | mat[row][ind++] = larr[j] * (-constraint[i].y); |
---|
154 | } |
---|
155 | col[row] = larr[nzind] * constraint[i].y; |
---|
156 | ++row; |
---|
157 | } |
---|
158 | |
---|
159 | // copy the matrix and vector for later computation |
---|
160 | if(incrPrecision) |
---|
161 | { |
---|
162 | for (i=0; i<11; i++) |
---|
163 | { |
---|
164 | for(int j=0; j<11; j++) |
---|
165 | backmat[i][j] = mat[i][j]; |
---|
166 | backcol[i] = col[i]; |
---|
167 | } |
---|
168 | } |
---|
169 | |
---|
170 | // solve for the matrix elements |
---|
171 | if(!NumericSolver::solveNxNLinearSysDestr(11, mat, col)) |
---|
172 | { |
---|
173 | // error solving for projective matrix (rows 1,2,4) |
---|
174 | } |
---|
175 | |
---|
176 | // get a little more precision |
---|
177 | if(incrPrecision) |
---|
178 | { |
---|
179 | for (int k=0; k<3; k++) |
---|
180 | { |
---|
181 | PreciseReal nvec[11]; |
---|
182 | for(i=0; i<11; i++) |
---|
183 | { |
---|
184 | int j; |
---|
185 | nvec[i] = backmat[i][0] * col[0]; |
---|
186 | mat[i][0] = backmat[i][0]; |
---|
187 | for(j=1; j<11; j++) |
---|
188 | { |
---|
189 | nvec[i] += backmat[i][j] * col[j]; |
---|
190 | mat[i][j] = backmat[i][j]; |
---|
191 | } |
---|
192 | nvec[i] -= backcol[i]; |
---|
193 | } |
---|
194 | if(!NumericSolver::solveNxNLinearSysDestr(11, mat, nvec)) |
---|
195 | { |
---|
196 | // error solving for increased precision rows 1,2,4 |
---|
197 | } |
---|
198 | for(i=0; i<11; i++) |
---|
199 | col[i] -= nvec[i]; |
---|
200 | } |
---|
201 | } |
---|
202 | |
---|
203 | PreciseReal row4[4]; |
---|
204 | ind = 8; |
---|
205 | for(i=0; i<4; i++) |
---|
206 | { |
---|
207 | if (i == nzind) |
---|
208 | row4[i] = 1.0; |
---|
209 | else |
---|
210 | row4[i] = col[ind++]; |
---|
211 | } |
---|
212 | |
---|
213 | |
---|
214 | // now solve for the 3rd row which affects depth precision |
---|
215 | PreciseReal zrow[4]; |
---|
216 | |
---|
217 | // we want the affine skew such that isoplanes of constant depth are parallel to |
---|
218 | // the world plane of interest |
---|
219 | // NOTE: recall we perturbed the last fpoint off the plane, so we'll again modify |
---|
220 | // this one since we want 3 points on the plane = far plane, and 1 on the near plane |
---|
221 | int nearind = 3; |
---|
222 | for(i=0; i<3; i++) |
---|
223 | { |
---|
224 | mat[i][0] = fpoint[i].x; |
---|
225 | mat[i][1] = fpoint[i].y; |
---|
226 | mat[i][2] = fpoint[i].z; |
---|
227 | mat[i][3] = 1.0; |
---|
228 | zrow[i] = (row4[0] * fpoint[i].x + |
---|
229 | row4[1] * fpoint[i].y + |
---|
230 | row4[2] * fpoint[i].z + |
---|
231 | row4[3]) * 0.99 ; |
---|
232 | } |
---|
233 | mat[3][0] = fpoint[nearind].x; |
---|
234 | mat[3][1] = fpoint[nearind].y; |
---|
235 | mat[3][2] = fpoint[nearind].z; |
---|
236 | mat[3][3] = 1.0; |
---|
237 | zrow[3] = -row4[0] * fpoint[nearind].x - |
---|
238 | row4[1] * fpoint[nearind].y - |
---|
239 | row4[2] * fpoint[nearind].z - |
---|
240 | row4[3] ; |
---|
241 | |
---|
242 | // solve for the z row of the matrix |
---|
243 | if(!NumericSolver::solveNxNLinearSysDestr(4, mat, zrow)) |
---|
244 | { |
---|
245 | // error solving for projective matrix (row 3) |
---|
246 | } |
---|
247 | |
---|
248 | // set projective texture matrix |
---|
249 | ret = Matrix4( col[0], col[1], col[2], col[3], |
---|
250 | col[4], col[5], col[6], col[7], |
---|
251 | zrow[0], zrow[1], zrow[2], zrow[3], |
---|
252 | row4[0], row4[1], row4[2], row4[3] ); |
---|
253 | |
---|
254 | |
---|
255 | // check for clip |
---|
256 | Vector4 testCoord = ret * fpoint[0]; |
---|
257 | if(testCoord.w < 0.0) |
---|
258 | ret = ret * (-1.0); |
---|
259 | |
---|
260 | // free memory |
---|
261 | for (i=0; i<11; i++) |
---|
262 | { |
---|
263 | if (mat[i]) |
---|
264 | delete [] mat[i]; |
---|
265 | if (incrPrecision) |
---|
266 | delete [] backmat[i]; |
---|
267 | } |
---|
268 | delete [] mat; |
---|
269 | if(incrPrecision) |
---|
270 | delete [] backmat; |
---|
271 | |
---|
272 | return ret; |
---|
273 | |
---|
274 | } |
---|
275 | |
---|
276 | // -------------------------------------------------------------------- |
---|
277 | |
---|
278 | /// Construct object to consider a specified plane of interest |
---|
279 | PlaneOptimalShadowCameraSetup::PlaneOptimalShadowCameraSetup(MovablePlane* plane) |
---|
280 | { |
---|
281 | m_plane = plane; |
---|
282 | } |
---|
283 | |
---|
284 | /// Destructor |
---|
285 | PlaneOptimalShadowCameraSetup::~PlaneOptimalShadowCameraSetup() {} |
---|
286 | |
---|
287 | /// Implements the plane optimal shadow camera setup algorithm |
---|
288 | void PlaneOptimalShadowCameraSetup::getShadowCamera (const SceneManager *sm, const Camera *cam, |
---|
289 | const Viewport *vp, const Light *light, Camera *texCam) const |
---|
290 | { |
---|
291 | // get the plane transformed by the parent node(s) |
---|
292 | // Also, make sure the plane is normalized |
---|
293 | Plane worldPlane = m_plane->_getDerivedPlane(); |
---|
294 | worldPlane.normalise(); |
---|
295 | |
---|
296 | // get camera's projection matrix |
---|
297 | Matrix4 camProjection = cam->getProjectionMatrix() * cam->getViewMatrix(); |
---|
298 | |
---|
299 | // get the world points to constrain |
---|
300 | std::vector<Vector4> vhull; |
---|
301 | cam->forwardIntersect(worldPlane, &vhull); |
---|
302 | if (vhull.size() < 4) |
---|
303 | return; |
---|
304 | |
---|
305 | // make sure the last point is a finite point (not point at infinity) |
---|
306 | if (vhull[3].w == 0.0) |
---|
307 | { |
---|
308 | int finiteIndex = -1; |
---|
309 | for (uint loopIndex = 0; loopIndex < vhull.size(); loopIndex++) |
---|
310 | { |
---|
311 | if (vhull[loopIndex].w != 0.0) |
---|
312 | { |
---|
313 | finiteIndex = loopIndex; |
---|
314 | break; |
---|
315 | } |
---|
316 | } |
---|
317 | if (finiteIndex == -1) |
---|
318 | { |
---|
319 | // there are no finite points, which means camera doesn't see plane of interest. |
---|
320 | // so we don't care what the shadow map matrix is |
---|
321 | // We'll map points off the shadow map so they aren't even stored |
---|
322 | Matrix4 crazyMat(0.0, 0.0, 0.0, 5.0, |
---|
323 | 0.0, 0.0, 0.0, 5.0, |
---|
324 | 0.0, 0.0, 0.0, 5.0, |
---|
325 | 0.0, 0.0, 0.0, 1.0); |
---|
326 | texCam->setCustomViewMatrix(true, Matrix4::IDENTITY); |
---|
327 | texCam->setCustomProjectionMatrix(true, crazyMat); |
---|
328 | return; |
---|
329 | } |
---|
330 | // swap finite point to last point |
---|
331 | std::swap(vhull[3], vhull[finiteIndex]); |
---|
332 | } |
---|
333 | vhull.resize(4); |
---|
334 | |
---|
335 | // get the post-projective coordinate constraints |
---|
336 | std::vector<Vector2> constraint; |
---|
337 | for (int i=0; i<4; i++) |
---|
338 | { |
---|
339 | Vector4 postProjPt = camProjection * vhull[i]; |
---|
340 | postProjPt *= 1.0 / postProjPt.w; |
---|
341 | constraint.push_back(Vector2(postProjPt.x, postProjPt.y)); |
---|
342 | } |
---|
343 | |
---|
344 | // perturb one point so we don't have coplanarity |
---|
345 | const Vector4& pinhole = light->getAs4DVector(); |
---|
346 | const Vector4& oldPt = vhull.back(); |
---|
347 | Vector4 newPt; |
---|
348 | if (pinhole.w == 0) |
---|
349 | { |
---|
350 | // It's directional light |
---|
351 | static const Real NEAR_SCALE = 100.0; |
---|
352 | newPt = oldPt + (pinhole * (cam->getNearClipDistance() * NEAR_SCALE)); |
---|
353 | } |
---|
354 | else |
---|
355 | { |
---|
356 | // It's point or spotlight |
---|
357 | Vector4 displacement = oldPt - pinhole; |
---|
358 | Vector3 displace3 = Vector3(displacement.x, displacement.y, displacement.z); |
---|
359 | Real dotProd = fabs(displace3.dotProduct(worldPlane.normal)); |
---|
360 | static const Real NEAR_FACTOR = 0.05; |
---|
361 | newPt = pinhole + (displacement * (cam->getNearClipDistance() * NEAR_FACTOR / dotProd)); |
---|
362 | } |
---|
363 | vhull.back() = newPt; |
---|
364 | |
---|
365 | // solve for the matrix that stabilizes the plane |
---|
366 | Matrix4 customMatrix = computeConstrainedProjection(pinhole, vhull, constraint); |
---|
367 | |
---|
368 | if (pinhole.w == 0) |
---|
369 | { |
---|
370 | // TODO: factor into view and projection pieces. |
---|
371 | // Note: In fact, it's unnecessary to factor into view and projection pieces, |
---|
372 | // but if we do, we will more according with academic requirement :) |
---|
373 | texCam->setCustomViewMatrix(true, Matrix4::IDENTITY); |
---|
374 | texCam->setCustomProjectionMatrix(true, customMatrix); |
---|
375 | return; |
---|
376 | } |
---|
377 | |
---|
378 | Vector3 tempPos = Vector3(pinhole.x, pinhole.y, pinhole.z); |
---|
379 | |
---|
380 | // factor into view and projection pieces |
---|
381 | Matrix4 translation(1.0, 0.0, 0.0, tempPos.x, |
---|
382 | 0.0, 1.0, 0.0, tempPos.y, |
---|
383 | 0.0, 0.0, 1.0, tempPos.z, |
---|
384 | 0.0, 0.0, 0.0, 1.0); |
---|
385 | Matrix4 invTranslation(1.0, 0.0, 0.0, -tempPos.x, |
---|
386 | 0.0, 1.0, 0.0, -tempPos.y, |
---|
387 | 0.0, 0.0, 1.0, -tempPos.z, |
---|
388 | 0.0, 0.0, 0.0, 1.0); |
---|
389 | Matrix4 tempMatrix = customMatrix * translation; |
---|
390 | Vector3 zRow(-tempMatrix[3][0], -tempMatrix[3][1], -tempMatrix[3][2]); |
---|
391 | zRow.normalise(); |
---|
392 | Vector3 up; |
---|
393 | if (zRow.y == 1.0) |
---|
394 | up = Vector3(1,0,0); |
---|
395 | else |
---|
396 | up = Vector3(0,1,0); |
---|
397 | Vector3 xDir = up.crossProduct(zRow); |
---|
398 | xDir.normalise(); |
---|
399 | up = zRow.crossProduct(xDir); |
---|
400 | Matrix4 rotation(xDir.x, up.x, zRow.x, 0.0, |
---|
401 | xDir.y, up.y, zRow.y, 0.0, |
---|
402 | xDir.z, up.z, zRow.z, 0.0, |
---|
403 | 0.0, 0.0, 0.0, 1.0 ); |
---|
404 | Matrix4 customProj = tempMatrix * rotation; |
---|
405 | Matrix4 customView = rotation.transpose() * invTranslation; |
---|
406 | // note: now customProj * (0,0,0,1)^t = (0, 0, k, 0)^t for k some constant |
---|
407 | // note: also customProj's 4th row is (0, 0, c, 0) for some negative c. |
---|
408 | |
---|
409 | |
---|
410 | // set the shadow map camera |
---|
411 | texCam->setCustomViewMatrix(true, customView); |
---|
412 | texCam->setCustomProjectionMatrix(true, customProj); |
---|
413 | } |
---|
414 | |
---|
415 | } |
---|
416 | |
---|