/* ----------------------------------------------------------------------------- This source file is part of OGRE (Object-oriented Graphics Rendering Engine) For the latest info, see http://www.ogre3d.org/ Copyright (c) 2000-2013 Torus Knot Software Ltd Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------------- */ #ifndef __DualQuaternion_H__ #define __DualQuaternion_H__ #include "OgrePrerequisites.h" #include "OgreMath.h" namespace Ogre { /** \addtogroup Core * @{ */ /** \addtogroup Math * @{ */ /** Implementation of a dual quaternion, i.e. a rotation around an axis and a translation. This implementation may note be appropriate as a general implementation, but is intended for use with dual quaternion skinning. */ class _OgreExport DualQuaternion { public: /// Default constructor, initializes to identity rotation (aka 0°), and zero translation (0,0,0) inline DualQuaternion () : w(1), x(0), y(0), z(0), dw(1), dx(0), dy(0), dz(0) { } /// Construct from an explicit list of values inline DualQuaternion (Real fW, Real fX, Real fY, Real fZ, Real fdW, Real fdX, Real fdY, Real fdZ) : w(fW), x(fX), y(fY), z(fZ), dw(fdW), dx(fdX), dy(fdY), dz(fdZ) { } /// Construct a dual quaternion from a transformation matrix inline DualQuaternion(const Matrix4& rot) { this->fromTransformationMatrix(rot); } /// Construct a dual quaternion from a unit quaternion and a translation vector inline DualQuaternion(const Quaternion& q, const Vector3& trans) { this->fromRotationTranslation(q, trans); } /// Construct a dual quaternion from 8 manual w/x/y/z/dw/dx/dy/dz values inline DualQuaternion(Real* valptr) { memcpy(&w, valptr, sizeof(Real)*8); } /// Array accessor operator inline Real operator [] ( const size_t i ) const { assert( i < 8 ); return *(&w+i); } /// Array accessor operator inline Real& operator [] ( const size_t i ) { assert( i < 8 ); return *(&w+i); } inline DualQuaternion& operator= (const DualQuaternion& rkQ) { w = rkQ.w; x = rkQ.x; y = rkQ.y; z = rkQ.z; dw = rkQ.dw; dx = rkQ.dx; dy = rkQ.dy; dz = rkQ.dz; return *this; } inline bool operator== (const DualQuaternion& rhs) const { return (rhs.w == w) && (rhs.x == x) && (rhs.y == y) && (rhs.z == z) && (rhs.dw == dw) && (rhs.dx == dx) && (rhs.dy == dy) && (rhs.dz == dz); } inline bool operator!= (const DualQuaternion& rhs) const { return !operator==(rhs); } /// Pointer accessor for direct copying inline Real* ptr() { return &w; } /// Pointer accessor for direct copying inline const Real* ptr() const { return &w; } /// Exchange the contents of this dual quaternion with another. inline void swap(DualQuaternion& other) { std::swap(w, other.w); std::swap(x, other.x); std::swap(y, other.y); std::swap(z, other.z); std::swap(dw, other.dw); std::swap(dx, other.dx); std::swap(dy, other.dy); std::swap(dz, other.dz); } /// Check whether this dual quaternion contains valid values inline bool isNaN() const { return Math::isNaN(w) || Math::isNaN(x) || Math::isNaN(y) || Math::isNaN(z) || Math::isNaN(dw) || Math::isNaN(dx) || Math::isNaN(dy) || Math::isNaN(dz); } /// Construct a dual quaternion from a rotation described by a Quaternion and a translation described by a Vector3 void fromRotationTranslation (const Quaternion& q, const Vector3& trans); /// Convert a dual quaternion into its two components, a Quaternion representing the rotation and a Vector3 representing the translation void toRotationTranslation (Quaternion& q, Vector3& translation) const; /// Construct a dual quaternion from a 4x4 transformation matrix void fromTransformationMatrix (const Matrix4& kTrans); /// Convert a dual quaternion to a 4x4 transformation matrix void toTransformationMatrix (Matrix4& kTrans) const; Real w, x, y, z, dw, dx, dy, dz; /** Function for writing to a stream. Outputs "DualQuaternion(w, x, y, z, dw, dx, dy, dz)" with w, x, y, z, dw, dx, dy, dz being the member values of the dual quaternion. */ inline _OgreExport friend std::ostream& operator << ( std::ostream& o, const DualQuaternion& q ) { o << "DualQuaternion(" << q.w << ", " << q.x << ", " << q.y << ", " << q.z << ", " << q.dw << ", " << q.dx << ", " << q.dy << ", " << q.dz << ")"; return o; } }; /** @} */ /** @} */ } #endif