[148] | 1 | /* |
---|
| 2 | ----------------------------------------------------------------------------- |
---|
| 3 | This source file is part of OGRE |
---|
| 4 | (Object-oriented Graphics Rendering Engine) |
---|
| 5 | For the latest info, see http://www.ogre3d.org/ |
---|
| 6 | |
---|
| 7 | Copyright (c) 2000-2013 Torus Knot Software Ltd |
---|
| 8 | |
---|
| 9 | Permission is hereby granted, free of charge, to any person obtaining a copy |
---|
| 10 | of this software and associated documentation files (the "Software"), to deal |
---|
| 11 | in the Software without restriction, including without limitation the rights |
---|
| 12 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
---|
| 13 | copies of the Software, and to permit persons to whom the Software is |
---|
| 14 | furnished to do so, subject to the following conditions: |
---|
| 15 | |
---|
| 16 | The above copyright notice and this permission notice shall be included in |
---|
| 17 | all copies or substantial portions of the Software. |
---|
| 18 | |
---|
| 19 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
---|
| 20 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
---|
| 21 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
---|
| 22 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
---|
| 23 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
---|
| 24 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
---|
| 25 | THE SOFTWARE. |
---|
| 26 | ----------------------------------------------------------------------------- |
---|
| 27 | */ |
---|
| 28 | #ifndef __Matrix4__ |
---|
| 29 | #define __Matrix4__ |
---|
| 30 | |
---|
| 31 | // Precompiler options |
---|
| 32 | #include "OgrePrerequisites.h" |
---|
| 33 | |
---|
| 34 | #include "OgreVector3.h" |
---|
| 35 | #include "OgreMatrix3.h" |
---|
| 36 | #include "OgreVector4.h" |
---|
| 37 | #include "OgrePlane.h" |
---|
| 38 | namespace Ogre |
---|
| 39 | { |
---|
| 40 | /** \addtogroup Core |
---|
| 41 | * @{ |
---|
| 42 | */ |
---|
| 43 | /** \addtogroup Math |
---|
| 44 | * @{ |
---|
| 45 | */ |
---|
| 46 | /** Class encapsulating a standard 4x4 homogeneous matrix. |
---|
| 47 | @remarks |
---|
| 48 | OGRE uses column vectors when applying matrix multiplications, |
---|
| 49 | This means a vector is represented as a single column, 4-row |
---|
| 50 | matrix. This has the effect that the transformations implemented |
---|
| 51 | by the matrices happens right-to-left e.g. if vector V is to be |
---|
| 52 | transformed by M1 then M2 then M3, the calculation would be |
---|
| 53 | M3 * M2 * M1 * V. The order that matrices are concatenated is |
---|
| 54 | vital since matrix multiplication is not commutative, i.e. you |
---|
| 55 | can get a different result if you concatenate in the wrong order. |
---|
| 56 | @par |
---|
| 57 | The use of column vectors and right-to-left ordering is the |
---|
| 58 | standard in most mathematical texts, and is the same as used in |
---|
| 59 | OpenGL. It is, however, the opposite of Direct3D, which has |
---|
| 60 | inexplicably chosen to differ from the accepted standard and uses |
---|
| 61 | row vectors and left-to-right matrix multiplication. |
---|
| 62 | @par |
---|
| 63 | OGRE deals with the differences between D3D and OpenGL etc. |
---|
| 64 | internally when operating through different render systems. OGRE |
---|
| 65 | users only need to conform to standard maths conventions, i.e. |
---|
| 66 | right-to-left matrix multiplication, (OGRE transposes matrices it |
---|
| 67 | passes to D3D to compensate). |
---|
| 68 | @par |
---|
| 69 | The generic form M * V which shows the layout of the matrix |
---|
| 70 | entries is shown below: |
---|
| 71 | <pre> |
---|
| 72 | [ m[0][0] m[0][1] m[0][2] m[0][3] ] {x} |
---|
| 73 | | m[1][0] m[1][1] m[1][2] m[1][3] | * {y} |
---|
| 74 | | m[2][0] m[2][1] m[2][2] m[2][3] | {z} |
---|
| 75 | [ m[3][0] m[3][1] m[3][2] m[3][3] ] {1} |
---|
| 76 | </pre> |
---|
| 77 | */ |
---|
| 78 | class _OgreExport Matrix4 |
---|
| 79 | { |
---|
| 80 | protected: |
---|
| 81 | /// The matrix entries, indexed by [row][col]. |
---|
| 82 | union { |
---|
| 83 | Real m[4][4]; |
---|
| 84 | Real _m[16]; |
---|
| 85 | }; |
---|
| 86 | public: |
---|
| 87 | /** Default constructor. |
---|
| 88 | @note |
---|
| 89 | It does <b>NOT</b> initialize the matrix for efficiency. |
---|
| 90 | */ |
---|
| 91 | inline Matrix4() |
---|
| 92 | { |
---|
| 93 | } |
---|
| 94 | |
---|
| 95 | inline Matrix4( |
---|
| 96 | Real m00, Real m01, Real m02, Real m03, |
---|
| 97 | Real m10, Real m11, Real m12, Real m13, |
---|
| 98 | Real m20, Real m21, Real m22, Real m23, |
---|
| 99 | Real m30, Real m31, Real m32, Real m33 ) |
---|
| 100 | { |
---|
| 101 | m[0][0] = m00; |
---|
| 102 | m[0][1] = m01; |
---|
| 103 | m[0][2] = m02; |
---|
| 104 | m[0][3] = m03; |
---|
| 105 | m[1][0] = m10; |
---|
| 106 | m[1][1] = m11; |
---|
| 107 | m[1][2] = m12; |
---|
| 108 | m[1][3] = m13; |
---|
| 109 | m[2][0] = m20; |
---|
| 110 | m[2][1] = m21; |
---|
| 111 | m[2][2] = m22; |
---|
| 112 | m[2][3] = m23; |
---|
| 113 | m[3][0] = m30; |
---|
| 114 | m[3][1] = m31; |
---|
| 115 | m[3][2] = m32; |
---|
| 116 | m[3][3] = m33; |
---|
| 117 | } |
---|
| 118 | |
---|
| 119 | /** Creates a standard 4x4 transformation matrix with a zero translation part from a rotation/scaling 3x3 matrix. |
---|
| 120 | */ |
---|
| 121 | |
---|
| 122 | inline Matrix4(const Matrix3& m3x3) |
---|
| 123 | { |
---|
| 124 | operator=(IDENTITY); |
---|
| 125 | operator=(m3x3); |
---|
| 126 | } |
---|
| 127 | |
---|
| 128 | /** Creates a standard 4x4 transformation matrix with a zero translation part from a rotation/scaling Quaternion. |
---|
| 129 | */ |
---|
| 130 | |
---|
| 131 | inline Matrix4(const Quaternion& rot) |
---|
| 132 | { |
---|
| 133 | Matrix3 m3x3; |
---|
| 134 | rot.ToRotationMatrix(m3x3); |
---|
| 135 | operator=(IDENTITY); |
---|
| 136 | operator=(m3x3); |
---|
| 137 | } |
---|
| 138 | |
---|
| 139 | |
---|
| 140 | /** Exchange the contents of this matrix with another. |
---|
| 141 | */ |
---|
| 142 | inline void swap(Matrix4& other) |
---|
| 143 | { |
---|
| 144 | std::swap(m[0][0], other.m[0][0]); |
---|
| 145 | std::swap(m[0][1], other.m[0][1]); |
---|
| 146 | std::swap(m[0][2], other.m[0][2]); |
---|
| 147 | std::swap(m[0][3], other.m[0][3]); |
---|
| 148 | std::swap(m[1][0], other.m[1][0]); |
---|
| 149 | std::swap(m[1][1], other.m[1][1]); |
---|
| 150 | std::swap(m[1][2], other.m[1][2]); |
---|
| 151 | std::swap(m[1][3], other.m[1][3]); |
---|
| 152 | std::swap(m[2][0], other.m[2][0]); |
---|
| 153 | std::swap(m[2][1], other.m[2][1]); |
---|
| 154 | std::swap(m[2][2], other.m[2][2]); |
---|
| 155 | std::swap(m[2][3], other.m[2][3]); |
---|
| 156 | std::swap(m[3][0], other.m[3][0]); |
---|
| 157 | std::swap(m[3][1], other.m[3][1]); |
---|
| 158 | std::swap(m[3][2], other.m[3][2]); |
---|
| 159 | std::swap(m[3][3], other.m[3][3]); |
---|
| 160 | } |
---|
| 161 | |
---|
| 162 | inline Real* operator [] ( size_t iRow ) |
---|
| 163 | { |
---|
| 164 | assert( iRow < 4 ); |
---|
| 165 | return m[iRow]; |
---|
| 166 | } |
---|
| 167 | |
---|
| 168 | inline const Real *operator [] ( size_t iRow ) const |
---|
| 169 | { |
---|
| 170 | assert( iRow < 4 ); |
---|
| 171 | return m[iRow]; |
---|
| 172 | } |
---|
| 173 | |
---|
| 174 | inline Matrix4 concatenate(const Matrix4 &m2) const |
---|
| 175 | { |
---|
| 176 | Matrix4 r; |
---|
| 177 | r.m[0][0] = m[0][0] * m2.m[0][0] + m[0][1] * m2.m[1][0] + m[0][2] * m2.m[2][0] + m[0][3] * m2.m[3][0]; |
---|
| 178 | r.m[0][1] = m[0][0] * m2.m[0][1] + m[0][1] * m2.m[1][1] + m[0][2] * m2.m[2][1] + m[0][3] * m2.m[3][1]; |
---|
| 179 | r.m[0][2] = m[0][0] * m2.m[0][2] + m[0][1] * m2.m[1][2] + m[0][2] * m2.m[2][2] + m[0][3] * m2.m[3][2]; |
---|
| 180 | r.m[0][3] = m[0][0] * m2.m[0][3] + m[0][1] * m2.m[1][3] + m[0][2] * m2.m[2][3] + m[0][3] * m2.m[3][3]; |
---|
| 181 | |
---|
| 182 | r.m[1][0] = m[1][0] * m2.m[0][0] + m[1][1] * m2.m[1][0] + m[1][2] * m2.m[2][0] + m[1][3] * m2.m[3][0]; |
---|
| 183 | r.m[1][1] = m[1][0] * m2.m[0][1] + m[1][1] * m2.m[1][1] + m[1][2] * m2.m[2][1] + m[1][3] * m2.m[3][1]; |
---|
| 184 | r.m[1][2] = m[1][0] * m2.m[0][2] + m[1][1] * m2.m[1][2] + m[1][2] * m2.m[2][2] + m[1][3] * m2.m[3][2]; |
---|
| 185 | r.m[1][3] = m[1][0] * m2.m[0][3] + m[1][1] * m2.m[1][3] + m[1][2] * m2.m[2][3] + m[1][3] * m2.m[3][3]; |
---|
| 186 | |
---|
| 187 | r.m[2][0] = m[2][0] * m2.m[0][0] + m[2][1] * m2.m[1][0] + m[2][2] * m2.m[2][0] + m[2][3] * m2.m[3][0]; |
---|
| 188 | r.m[2][1] = m[2][0] * m2.m[0][1] + m[2][1] * m2.m[1][1] + m[2][2] * m2.m[2][1] + m[2][3] * m2.m[3][1]; |
---|
| 189 | r.m[2][2] = m[2][0] * m2.m[0][2] + m[2][1] * m2.m[1][2] + m[2][2] * m2.m[2][2] + m[2][3] * m2.m[3][2]; |
---|
| 190 | r.m[2][3] = m[2][0] * m2.m[0][3] + m[2][1] * m2.m[1][3] + m[2][2] * m2.m[2][3] + m[2][3] * m2.m[3][3]; |
---|
| 191 | |
---|
| 192 | r.m[3][0] = m[3][0] * m2.m[0][0] + m[3][1] * m2.m[1][0] + m[3][2] * m2.m[2][0] + m[3][3] * m2.m[3][0]; |
---|
| 193 | r.m[3][1] = m[3][0] * m2.m[0][1] + m[3][1] * m2.m[1][1] + m[3][2] * m2.m[2][1] + m[3][3] * m2.m[3][1]; |
---|
| 194 | r.m[3][2] = m[3][0] * m2.m[0][2] + m[3][1] * m2.m[1][2] + m[3][2] * m2.m[2][2] + m[3][3] * m2.m[3][2]; |
---|
| 195 | r.m[3][3] = m[3][0] * m2.m[0][3] + m[3][1] * m2.m[1][3] + m[3][2] * m2.m[2][3] + m[3][3] * m2.m[3][3]; |
---|
| 196 | |
---|
| 197 | return r; |
---|
| 198 | } |
---|
| 199 | |
---|
| 200 | /** Matrix concatenation using '*'. |
---|
| 201 | */ |
---|
| 202 | inline Matrix4 operator * ( const Matrix4 &m2 ) const |
---|
| 203 | { |
---|
| 204 | return concatenate( m2 ); |
---|
| 205 | } |
---|
| 206 | |
---|
| 207 | /** Vector transformation using '*'. |
---|
| 208 | @remarks |
---|
| 209 | Transforms the given 3-D vector by the matrix, projecting the |
---|
| 210 | result back into <i>w</i> = 1. |
---|
| 211 | @note |
---|
| 212 | This means that the initial <i>w</i> is considered to be 1.0, |
---|
| 213 | and then all the tree elements of the resulting 3-D vector are |
---|
| 214 | divided by the resulting <i>w</i>. |
---|
| 215 | */ |
---|
| 216 | inline Vector3 operator * ( const Vector3 &v ) const |
---|
| 217 | { |
---|
| 218 | Vector3 r; |
---|
| 219 | |
---|
| 220 | Real fInvW = 1.0f / ( m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] ); |
---|
| 221 | |
---|
| 222 | r.x = ( m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] ) * fInvW; |
---|
| 223 | r.y = ( m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] ) * fInvW; |
---|
| 224 | r.z = ( m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] ) * fInvW; |
---|
| 225 | |
---|
| 226 | return r; |
---|
| 227 | } |
---|
| 228 | inline Vector4 operator * (const Vector4& v) const |
---|
| 229 | { |
---|
| 230 | return Vector4( |
---|
| 231 | m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w, |
---|
| 232 | m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w, |
---|
| 233 | m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w, |
---|
| 234 | m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] * v.w |
---|
| 235 | ); |
---|
| 236 | } |
---|
| 237 | inline Plane operator * (const Plane& p) const |
---|
| 238 | { |
---|
| 239 | Plane ret; |
---|
| 240 | Matrix4 invTrans = inverse().transpose(); |
---|
| 241 | Vector4 v4( p.normal.x, p.normal.y, p.normal.z, p.d ); |
---|
| 242 | v4 = invTrans * v4; |
---|
| 243 | ret.normal.x = v4.x; |
---|
| 244 | ret.normal.y = v4.y; |
---|
| 245 | ret.normal.z = v4.z; |
---|
| 246 | ret.d = v4.w / ret.normal.normalise(); |
---|
| 247 | |
---|
| 248 | return ret; |
---|
| 249 | } |
---|
| 250 | |
---|
| 251 | |
---|
| 252 | /** Matrix addition. |
---|
| 253 | */ |
---|
| 254 | inline Matrix4 operator + ( const Matrix4 &m2 ) const |
---|
| 255 | { |
---|
| 256 | Matrix4 r; |
---|
| 257 | |
---|
| 258 | r.m[0][0] = m[0][0] + m2.m[0][0]; |
---|
| 259 | r.m[0][1] = m[0][1] + m2.m[0][1]; |
---|
| 260 | r.m[0][2] = m[0][2] + m2.m[0][2]; |
---|
| 261 | r.m[0][3] = m[0][3] + m2.m[0][3]; |
---|
| 262 | |
---|
| 263 | r.m[1][0] = m[1][0] + m2.m[1][0]; |
---|
| 264 | r.m[1][1] = m[1][1] + m2.m[1][1]; |
---|
| 265 | r.m[1][2] = m[1][2] + m2.m[1][2]; |
---|
| 266 | r.m[1][3] = m[1][3] + m2.m[1][3]; |
---|
| 267 | |
---|
| 268 | r.m[2][0] = m[2][0] + m2.m[2][0]; |
---|
| 269 | r.m[2][1] = m[2][1] + m2.m[2][1]; |
---|
| 270 | r.m[2][2] = m[2][2] + m2.m[2][2]; |
---|
| 271 | r.m[2][3] = m[2][3] + m2.m[2][3]; |
---|
| 272 | |
---|
| 273 | r.m[3][0] = m[3][0] + m2.m[3][0]; |
---|
| 274 | r.m[3][1] = m[3][1] + m2.m[3][1]; |
---|
| 275 | r.m[3][2] = m[3][2] + m2.m[3][2]; |
---|
| 276 | r.m[3][3] = m[3][3] + m2.m[3][3]; |
---|
| 277 | |
---|
| 278 | return r; |
---|
| 279 | } |
---|
| 280 | |
---|
| 281 | /** Matrix subtraction. |
---|
| 282 | */ |
---|
| 283 | inline Matrix4 operator - ( const Matrix4 &m2 ) const |
---|
| 284 | { |
---|
| 285 | Matrix4 r; |
---|
| 286 | r.m[0][0] = m[0][0] - m2.m[0][0]; |
---|
| 287 | r.m[0][1] = m[0][1] - m2.m[0][1]; |
---|
| 288 | r.m[0][2] = m[0][2] - m2.m[0][2]; |
---|
| 289 | r.m[0][3] = m[0][3] - m2.m[0][3]; |
---|
| 290 | |
---|
| 291 | r.m[1][0] = m[1][0] - m2.m[1][0]; |
---|
| 292 | r.m[1][1] = m[1][1] - m2.m[1][1]; |
---|
| 293 | r.m[1][2] = m[1][2] - m2.m[1][2]; |
---|
| 294 | r.m[1][3] = m[1][3] - m2.m[1][3]; |
---|
| 295 | |
---|
| 296 | r.m[2][0] = m[2][0] - m2.m[2][0]; |
---|
| 297 | r.m[2][1] = m[2][1] - m2.m[2][1]; |
---|
| 298 | r.m[2][2] = m[2][2] - m2.m[2][2]; |
---|
| 299 | r.m[2][3] = m[2][3] - m2.m[2][3]; |
---|
| 300 | |
---|
| 301 | r.m[3][0] = m[3][0] - m2.m[3][0]; |
---|
| 302 | r.m[3][1] = m[3][1] - m2.m[3][1]; |
---|
| 303 | r.m[3][2] = m[3][2] - m2.m[3][2]; |
---|
| 304 | r.m[3][3] = m[3][3] - m2.m[3][3]; |
---|
| 305 | |
---|
| 306 | return r; |
---|
| 307 | } |
---|
| 308 | |
---|
| 309 | /** Tests 2 matrices for equality. |
---|
| 310 | */ |
---|
| 311 | inline bool operator == ( const Matrix4& m2 ) const |
---|
| 312 | { |
---|
| 313 | if( |
---|
| 314 | m[0][0] != m2.m[0][0] || m[0][1] != m2.m[0][1] || m[0][2] != m2.m[0][2] || m[0][3] != m2.m[0][3] || |
---|
| 315 | m[1][0] != m2.m[1][0] || m[1][1] != m2.m[1][1] || m[1][2] != m2.m[1][2] || m[1][3] != m2.m[1][3] || |
---|
| 316 | m[2][0] != m2.m[2][0] || m[2][1] != m2.m[2][1] || m[2][2] != m2.m[2][2] || m[2][3] != m2.m[2][3] || |
---|
| 317 | m[3][0] != m2.m[3][0] || m[3][1] != m2.m[3][1] || m[3][2] != m2.m[3][2] || m[3][3] != m2.m[3][3] ) |
---|
| 318 | return false; |
---|
| 319 | return true; |
---|
| 320 | } |
---|
| 321 | |
---|
| 322 | /** Tests 2 matrices for inequality. |
---|
| 323 | */ |
---|
| 324 | inline bool operator != ( const Matrix4& m2 ) const |
---|
| 325 | { |
---|
| 326 | if( |
---|
| 327 | m[0][0] != m2.m[0][0] || m[0][1] != m2.m[0][1] || m[0][2] != m2.m[0][2] || m[0][3] != m2.m[0][3] || |
---|
| 328 | m[1][0] != m2.m[1][0] || m[1][1] != m2.m[1][1] || m[1][2] != m2.m[1][2] || m[1][3] != m2.m[1][3] || |
---|
| 329 | m[2][0] != m2.m[2][0] || m[2][1] != m2.m[2][1] || m[2][2] != m2.m[2][2] || m[2][3] != m2.m[2][3] || |
---|
| 330 | m[3][0] != m2.m[3][0] || m[3][1] != m2.m[3][1] || m[3][2] != m2.m[3][2] || m[3][3] != m2.m[3][3] ) |
---|
| 331 | return true; |
---|
| 332 | return false; |
---|
| 333 | } |
---|
| 334 | |
---|
| 335 | /** Assignment from 3x3 matrix. |
---|
| 336 | */ |
---|
| 337 | inline void operator = ( const Matrix3& mat3 ) |
---|
| 338 | { |
---|
| 339 | m[0][0] = mat3.m[0][0]; m[0][1] = mat3.m[0][1]; m[0][2] = mat3.m[0][2]; |
---|
| 340 | m[1][0] = mat3.m[1][0]; m[1][1] = mat3.m[1][1]; m[1][2] = mat3.m[1][2]; |
---|
| 341 | m[2][0] = mat3.m[2][0]; m[2][1] = mat3.m[2][1]; m[2][2] = mat3.m[2][2]; |
---|
| 342 | } |
---|
| 343 | |
---|
| 344 | inline Matrix4 transpose(void) const |
---|
| 345 | { |
---|
| 346 | return Matrix4(m[0][0], m[1][0], m[2][0], m[3][0], |
---|
| 347 | m[0][1], m[1][1], m[2][1], m[3][1], |
---|
| 348 | m[0][2], m[1][2], m[2][2], m[3][2], |
---|
| 349 | m[0][3], m[1][3], m[2][3], m[3][3]); |
---|
| 350 | } |
---|
| 351 | |
---|
| 352 | /* |
---|
| 353 | ----------------------------------------------------------------------- |
---|
| 354 | Translation Transformation |
---|
| 355 | ----------------------------------------------------------------------- |
---|
| 356 | */ |
---|
| 357 | /** Sets the translation transformation part of the matrix. |
---|
| 358 | */ |
---|
| 359 | inline void setTrans( const Vector3& v ) |
---|
| 360 | { |
---|
| 361 | m[0][3] = v.x; |
---|
| 362 | m[1][3] = v.y; |
---|
| 363 | m[2][3] = v.z; |
---|
| 364 | } |
---|
| 365 | |
---|
| 366 | /** Extracts the translation transformation part of the matrix. |
---|
| 367 | */ |
---|
| 368 | inline Vector3 getTrans() const |
---|
| 369 | { |
---|
| 370 | return Vector3(m[0][3], m[1][3], m[2][3]); |
---|
| 371 | } |
---|
| 372 | |
---|
| 373 | |
---|
| 374 | /** Builds a translation matrix |
---|
| 375 | */ |
---|
| 376 | inline void makeTrans( const Vector3& v ) |
---|
| 377 | { |
---|
| 378 | m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[0][3] = v.x; |
---|
| 379 | m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[1][3] = v.y; |
---|
| 380 | m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; m[2][3] = v.z; |
---|
| 381 | m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[3][3] = 1.0; |
---|
| 382 | } |
---|
| 383 | |
---|
| 384 | inline void makeTrans( Real tx, Real ty, Real tz ) |
---|
| 385 | { |
---|
| 386 | m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[0][3] = tx; |
---|
| 387 | m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[1][3] = ty; |
---|
| 388 | m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; m[2][3] = tz; |
---|
| 389 | m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[3][3] = 1.0; |
---|
| 390 | } |
---|
| 391 | |
---|
| 392 | /** Gets a translation matrix. |
---|
| 393 | */ |
---|
| 394 | inline static Matrix4 getTrans( const Vector3& v ) |
---|
| 395 | { |
---|
| 396 | Matrix4 r; |
---|
| 397 | |
---|
| 398 | r.m[0][0] = 1.0; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = v.x; |
---|
| 399 | r.m[1][0] = 0.0; r.m[1][1] = 1.0; r.m[1][2] = 0.0; r.m[1][3] = v.y; |
---|
| 400 | r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = 1.0; r.m[2][3] = v.z; |
---|
| 401 | r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0; |
---|
| 402 | |
---|
| 403 | return r; |
---|
| 404 | } |
---|
| 405 | |
---|
| 406 | /** Gets a translation matrix - variation for not using a vector. |
---|
| 407 | */ |
---|
| 408 | inline static Matrix4 getTrans( Real t_x, Real t_y, Real t_z ) |
---|
| 409 | { |
---|
| 410 | Matrix4 r; |
---|
| 411 | |
---|
| 412 | r.m[0][0] = 1.0; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = t_x; |
---|
| 413 | r.m[1][0] = 0.0; r.m[1][1] = 1.0; r.m[1][2] = 0.0; r.m[1][3] = t_y; |
---|
| 414 | r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = 1.0; r.m[2][3] = t_z; |
---|
| 415 | r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0; |
---|
| 416 | |
---|
| 417 | return r; |
---|
| 418 | } |
---|
| 419 | |
---|
| 420 | /* |
---|
| 421 | ----------------------------------------------------------------------- |
---|
| 422 | Scale Transformation |
---|
| 423 | ----------------------------------------------------------------------- |
---|
| 424 | */ |
---|
| 425 | /** Sets the scale part of the matrix. |
---|
| 426 | */ |
---|
| 427 | inline void setScale( const Vector3& v ) |
---|
| 428 | { |
---|
| 429 | m[0][0] = v.x; |
---|
| 430 | m[1][1] = v.y; |
---|
| 431 | m[2][2] = v.z; |
---|
| 432 | } |
---|
| 433 | |
---|
| 434 | /** Gets a scale matrix. |
---|
| 435 | */ |
---|
| 436 | inline static Matrix4 getScale( const Vector3& v ) |
---|
| 437 | { |
---|
| 438 | Matrix4 r; |
---|
| 439 | r.m[0][0] = v.x; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = 0.0; |
---|
| 440 | r.m[1][0] = 0.0; r.m[1][1] = v.y; r.m[1][2] = 0.0; r.m[1][3] = 0.0; |
---|
| 441 | r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = v.z; r.m[2][3] = 0.0; |
---|
| 442 | r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0; |
---|
| 443 | |
---|
| 444 | return r; |
---|
| 445 | } |
---|
| 446 | |
---|
| 447 | /** Gets a scale matrix - variation for not using a vector. |
---|
| 448 | */ |
---|
| 449 | inline static Matrix4 getScale( Real s_x, Real s_y, Real s_z ) |
---|
| 450 | { |
---|
| 451 | Matrix4 r; |
---|
| 452 | r.m[0][0] = s_x; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = 0.0; |
---|
| 453 | r.m[1][0] = 0.0; r.m[1][1] = s_y; r.m[1][2] = 0.0; r.m[1][3] = 0.0; |
---|
| 454 | r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = s_z; r.m[2][3] = 0.0; |
---|
| 455 | r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0; |
---|
| 456 | |
---|
| 457 | return r; |
---|
| 458 | } |
---|
| 459 | |
---|
| 460 | /** Extracts the rotation / scaling part of the Matrix as a 3x3 matrix. |
---|
| 461 | @param m3x3 Destination Matrix3 |
---|
| 462 | */ |
---|
| 463 | inline void extract3x3Matrix(Matrix3& m3x3) const |
---|
| 464 | { |
---|
| 465 | m3x3.m[0][0] = m[0][0]; |
---|
| 466 | m3x3.m[0][1] = m[0][1]; |
---|
| 467 | m3x3.m[0][2] = m[0][2]; |
---|
| 468 | m3x3.m[1][0] = m[1][0]; |
---|
| 469 | m3x3.m[1][1] = m[1][1]; |
---|
| 470 | m3x3.m[1][2] = m[1][2]; |
---|
| 471 | m3x3.m[2][0] = m[2][0]; |
---|
| 472 | m3x3.m[2][1] = m[2][1]; |
---|
| 473 | m3x3.m[2][2] = m[2][2]; |
---|
| 474 | |
---|
| 475 | } |
---|
| 476 | |
---|
| 477 | /** Determines if this matrix involves a scaling. */ |
---|
| 478 | inline bool hasScale() const |
---|
| 479 | { |
---|
| 480 | // check magnitude of column vectors (==local axes) |
---|
| 481 | Real t = m[0][0] * m[0][0] + m[1][0] * m[1][0] + m[2][0] * m[2][0]; |
---|
| 482 | if (!Math::RealEqual(t, 1.0, (Real)1e-04)) |
---|
| 483 | return true; |
---|
| 484 | t = m[0][1] * m[0][1] + m[1][1] * m[1][1] + m[2][1] * m[2][1]; |
---|
| 485 | if (!Math::RealEqual(t, 1.0, (Real)1e-04)) |
---|
| 486 | return true; |
---|
| 487 | t = m[0][2] * m[0][2] + m[1][2] * m[1][2] + m[2][2] * m[2][2]; |
---|
| 488 | if (!Math::RealEqual(t, 1.0, (Real)1e-04)) |
---|
| 489 | return true; |
---|
| 490 | |
---|
| 491 | return false; |
---|
| 492 | } |
---|
| 493 | |
---|
| 494 | /** Determines if this matrix involves a negative scaling. */ |
---|
| 495 | inline bool hasNegativeScale() const |
---|
| 496 | { |
---|
| 497 | return determinant() < 0; |
---|
| 498 | } |
---|
| 499 | |
---|
| 500 | /** Extracts the rotation / scaling part as a quaternion from the Matrix. |
---|
| 501 | */ |
---|
| 502 | inline Quaternion extractQuaternion() const |
---|
| 503 | { |
---|
| 504 | Matrix3 m3x3; |
---|
| 505 | extract3x3Matrix(m3x3); |
---|
| 506 | return Quaternion(m3x3); |
---|
| 507 | } |
---|
| 508 | |
---|
| 509 | static const Matrix4 ZERO; |
---|
| 510 | static const Matrix4 ZEROAFFINE; |
---|
| 511 | static const Matrix4 IDENTITY; |
---|
| 512 | /** Useful little matrix which takes 2D clipspace {-1, 1} to {0,1} |
---|
| 513 | and inverts the Y. */ |
---|
| 514 | static const Matrix4 CLIPSPACE2DTOIMAGESPACE; |
---|
| 515 | |
---|
| 516 | inline Matrix4 operator*(Real scalar) const |
---|
| 517 | { |
---|
| 518 | return Matrix4( |
---|
| 519 | scalar*m[0][0], scalar*m[0][1], scalar*m[0][2], scalar*m[0][3], |
---|
| 520 | scalar*m[1][0], scalar*m[1][1], scalar*m[1][2], scalar*m[1][3], |
---|
| 521 | scalar*m[2][0], scalar*m[2][1], scalar*m[2][2], scalar*m[2][3], |
---|
| 522 | scalar*m[3][0], scalar*m[3][1], scalar*m[3][2], scalar*m[3][3]); |
---|
| 523 | } |
---|
| 524 | |
---|
| 525 | /** Function for writing to a stream. |
---|
| 526 | */ |
---|
| 527 | inline _OgreExport friend std::ostream& operator << |
---|
| 528 | ( std::ostream& o, const Matrix4& mat ) |
---|
| 529 | { |
---|
| 530 | o << "Matrix4("; |
---|
| 531 | for (size_t i = 0; i < 4; ++i) |
---|
| 532 | { |
---|
| 533 | o << " row" << (unsigned)i << "{"; |
---|
| 534 | for(size_t j = 0; j < 4; ++j) |
---|
| 535 | { |
---|
| 536 | o << mat[i][j] << " "; |
---|
| 537 | } |
---|
| 538 | o << "}"; |
---|
| 539 | } |
---|
| 540 | o << ")"; |
---|
| 541 | return o; |
---|
| 542 | } |
---|
| 543 | |
---|
| 544 | Matrix4 adjoint() const; |
---|
| 545 | Real determinant() const; |
---|
| 546 | Matrix4 inverse() const; |
---|
| 547 | |
---|
| 548 | /** Building a Matrix4 from orientation / scale / position. |
---|
| 549 | @remarks |
---|
| 550 | Transform is performed in the order scale, rotate, translation, i.e. translation is independent |
---|
| 551 | of orientation axes, scale does not affect size of translation, rotation and scaling are always |
---|
| 552 | centered on the origin. |
---|
| 553 | */ |
---|
| 554 | void makeTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation); |
---|
| 555 | |
---|
| 556 | /** Building an inverse Matrix4 from orientation / scale / position. |
---|
| 557 | @remarks |
---|
| 558 | As makeTransform except it build the inverse given the same data as makeTransform, so |
---|
| 559 | performing -translation, -rotate, 1/scale in that order. |
---|
| 560 | */ |
---|
| 561 | void makeInverseTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation); |
---|
| 562 | |
---|
| 563 | /** Decompose a Matrix4 to orientation / scale / position. |
---|
| 564 | */ |
---|
| 565 | void decomposition(Vector3& position, Vector3& scale, Quaternion& orientation) const; |
---|
| 566 | |
---|
| 567 | /** Check whether or not the matrix is affine matrix. |
---|
| 568 | @remarks |
---|
| 569 | An affine matrix is a 4x4 matrix with row 3 equal to (0, 0, 0, 1), |
---|
| 570 | e.g. no projective coefficients. |
---|
| 571 | */ |
---|
| 572 | inline bool isAffine(void) const |
---|
| 573 | { |
---|
| 574 | return m[3][0] == 0 && m[3][1] == 0 && m[3][2] == 0 && m[3][3] == 1; |
---|
| 575 | } |
---|
| 576 | |
---|
| 577 | /** Returns the inverse of the affine matrix. |
---|
| 578 | @note |
---|
| 579 | The matrix must be an affine matrix. @see Matrix4::isAffine. |
---|
| 580 | */ |
---|
| 581 | Matrix4 inverseAffine(void) const; |
---|
| 582 | |
---|
| 583 | /** Concatenate two affine matrices. |
---|
| 584 | @note |
---|
| 585 | The matrices must be affine matrix. @see Matrix4::isAffine. |
---|
| 586 | */ |
---|
| 587 | inline Matrix4 concatenateAffine(const Matrix4 &m2) const |
---|
| 588 | { |
---|
| 589 | assert(isAffine() && m2.isAffine()); |
---|
| 590 | |
---|
| 591 | return Matrix4( |
---|
| 592 | m[0][0] * m2.m[0][0] + m[0][1] * m2.m[1][0] + m[0][2] * m2.m[2][0], |
---|
| 593 | m[0][0] * m2.m[0][1] + m[0][1] * m2.m[1][1] + m[0][2] * m2.m[2][1], |
---|
| 594 | m[0][0] * m2.m[0][2] + m[0][1] * m2.m[1][2] + m[0][2] * m2.m[2][2], |
---|
| 595 | m[0][0] * m2.m[0][3] + m[0][1] * m2.m[1][3] + m[0][2] * m2.m[2][3] + m[0][3], |
---|
| 596 | |
---|
| 597 | m[1][0] * m2.m[0][0] + m[1][1] * m2.m[1][0] + m[1][2] * m2.m[2][0], |
---|
| 598 | m[1][0] * m2.m[0][1] + m[1][1] * m2.m[1][1] + m[1][2] * m2.m[2][1], |
---|
| 599 | m[1][0] * m2.m[0][2] + m[1][1] * m2.m[1][2] + m[1][2] * m2.m[2][2], |
---|
| 600 | m[1][0] * m2.m[0][3] + m[1][1] * m2.m[1][3] + m[1][2] * m2.m[2][3] + m[1][3], |
---|
| 601 | |
---|
| 602 | m[2][0] * m2.m[0][0] + m[2][1] * m2.m[1][0] + m[2][2] * m2.m[2][0], |
---|
| 603 | m[2][0] * m2.m[0][1] + m[2][1] * m2.m[1][1] + m[2][2] * m2.m[2][1], |
---|
| 604 | m[2][0] * m2.m[0][2] + m[2][1] * m2.m[1][2] + m[2][2] * m2.m[2][2], |
---|
| 605 | m[2][0] * m2.m[0][3] + m[2][1] * m2.m[1][3] + m[2][2] * m2.m[2][3] + m[2][3], |
---|
| 606 | |
---|
| 607 | 0, 0, 0, 1); |
---|
| 608 | } |
---|
| 609 | |
---|
| 610 | /** 3-D Vector transformation specially for an affine matrix. |
---|
| 611 | @remarks |
---|
| 612 | Transforms the given 3-D vector by the matrix, projecting the |
---|
| 613 | result back into <i>w</i> = 1. |
---|
| 614 | @note |
---|
| 615 | The matrix must be an affine matrix. @see Matrix4::isAffine. |
---|
| 616 | */ |
---|
| 617 | inline Vector3 transformAffine(const Vector3& v) const |
---|
| 618 | { |
---|
| 619 | assert(isAffine()); |
---|
| 620 | |
---|
| 621 | return Vector3( |
---|
| 622 | m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3], |
---|
| 623 | m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3], |
---|
| 624 | m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3]); |
---|
| 625 | } |
---|
| 626 | |
---|
| 627 | /** 4-D Vector transformation specially for an affine matrix. |
---|
| 628 | @note |
---|
| 629 | The matrix must be an affine matrix. @see Matrix4::isAffine. |
---|
| 630 | */ |
---|
| 631 | inline Vector4 transformAffine(const Vector4& v) const |
---|
| 632 | { |
---|
| 633 | assert(isAffine()); |
---|
| 634 | |
---|
| 635 | return Vector4( |
---|
| 636 | m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w, |
---|
| 637 | m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w, |
---|
| 638 | m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w, |
---|
| 639 | v.w); |
---|
| 640 | } |
---|
| 641 | }; |
---|
| 642 | |
---|
| 643 | /* Removed from Vector4 and made a non-member here because otherwise |
---|
| 644 | OgreMatrix4.h and OgreVector4.h have to try to include and inline each |
---|
| 645 | other, which frankly doesn't work ;) |
---|
| 646 | */ |
---|
| 647 | inline Vector4 operator * (const Vector4& v, const Matrix4& mat) |
---|
| 648 | { |
---|
| 649 | return Vector4( |
---|
| 650 | v.x*mat[0][0] + v.y*mat[1][0] + v.z*mat[2][0] + v.w*mat[3][0], |
---|
| 651 | v.x*mat[0][1] + v.y*mat[1][1] + v.z*mat[2][1] + v.w*mat[3][1], |
---|
| 652 | v.x*mat[0][2] + v.y*mat[1][2] + v.z*mat[2][2] + v.w*mat[3][2], |
---|
| 653 | v.x*mat[0][3] + v.y*mat[1][3] + v.z*mat[2][3] + v.w*mat[3][3] |
---|
| 654 | ); |
---|
| 655 | } |
---|
| 656 | /** @} */ |
---|
| 657 | /** @} */ |
---|
| 658 | |
---|
| 659 | } |
---|
| 660 | #endif |
---|