1 | /* |
---|
2 | ----------------------------------------------------------------------------- |
---|
3 | This source file is part of OGRE |
---|
4 | (Object-oriented Graphics Rendering Engine) |
---|
5 | For the latest info, see http://www.ogre3d.org/ |
---|
6 | |
---|
7 | Copyright (c) 2000-2013 Torus Knot Software Ltd |
---|
8 | |
---|
9 | Permission is hereby granted, free of charge, to any person obtaining a copy |
---|
10 | of this software and associated documentation files (the "Software"), to deal |
---|
11 | in the Software without restriction, including without limitation the rights |
---|
12 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
---|
13 | copies of the Software, and to permit persons to whom the Software is |
---|
14 | furnished to do so, subject to the following conditions: |
---|
15 | |
---|
16 | The above copyright notice and this permission notice shall be included in |
---|
17 | all copies or substantial portions of the Software. |
---|
18 | |
---|
19 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
---|
20 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
---|
21 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
---|
22 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
---|
23 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
---|
24 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
---|
25 | THE SOFTWARE. |
---|
26 | ----------------------------------------------------------------------------- |
---|
27 | */ |
---|
28 | #ifndef __Vector2_H__ |
---|
29 | #define __Vector2_H__ |
---|
30 | |
---|
31 | |
---|
32 | #include "OgrePrerequisites.h" |
---|
33 | #include "OgreMath.h" |
---|
34 | |
---|
35 | namespace Ogre |
---|
36 | { |
---|
37 | |
---|
38 | /** \addtogroup Core |
---|
39 | * @{ |
---|
40 | */ |
---|
41 | /** \addtogroup Math |
---|
42 | * @{ |
---|
43 | */ |
---|
44 | /** Standard 2-dimensional vector. |
---|
45 | @remarks |
---|
46 | A direction in 2D space represented as distances along the 2 |
---|
47 | orthogonal axes (x, y). Note that positions, directions and |
---|
48 | scaling factors can be represented by a vector, depending on how |
---|
49 | you interpret the values. |
---|
50 | */ |
---|
51 | class _OgreExport Vector2 |
---|
52 | { |
---|
53 | public: |
---|
54 | Real x, y; |
---|
55 | |
---|
56 | public: |
---|
57 | /** Default constructor. |
---|
58 | @note |
---|
59 | It does <b>NOT</b> initialize the vector for efficiency. |
---|
60 | */ |
---|
61 | inline Vector2() |
---|
62 | { |
---|
63 | } |
---|
64 | |
---|
65 | inline Vector2(const Real fX, const Real fY ) |
---|
66 | : x( fX ), y( fY ) |
---|
67 | { |
---|
68 | } |
---|
69 | |
---|
70 | inline explicit Vector2( const Real scaler ) |
---|
71 | : x( scaler), y( scaler ) |
---|
72 | { |
---|
73 | } |
---|
74 | |
---|
75 | inline explicit Vector2( const Real afCoordinate[2] ) |
---|
76 | : x( afCoordinate[0] ), |
---|
77 | y( afCoordinate[1] ) |
---|
78 | { |
---|
79 | } |
---|
80 | |
---|
81 | inline explicit Vector2( const int afCoordinate[2] ) |
---|
82 | { |
---|
83 | x = (Real)afCoordinate[0]; |
---|
84 | y = (Real)afCoordinate[1]; |
---|
85 | } |
---|
86 | |
---|
87 | inline explicit Vector2( Real* const r ) |
---|
88 | : x( r[0] ), y( r[1] ) |
---|
89 | { |
---|
90 | } |
---|
91 | |
---|
92 | /** Exchange the contents of this vector with another. |
---|
93 | */ |
---|
94 | inline void swap(Vector2& other) |
---|
95 | { |
---|
96 | std::swap(x, other.x); |
---|
97 | std::swap(y, other.y); |
---|
98 | } |
---|
99 | |
---|
100 | inline Real operator [] ( const size_t i ) const |
---|
101 | { |
---|
102 | assert( i < 2 ); |
---|
103 | |
---|
104 | return *(&x+i); |
---|
105 | } |
---|
106 | |
---|
107 | inline Real& operator [] ( const size_t i ) |
---|
108 | { |
---|
109 | assert( i < 2 ); |
---|
110 | |
---|
111 | return *(&x+i); |
---|
112 | } |
---|
113 | |
---|
114 | /// Pointer accessor for direct copying |
---|
115 | inline Real* ptr() |
---|
116 | { |
---|
117 | return &x; |
---|
118 | } |
---|
119 | /// Pointer accessor for direct copying |
---|
120 | inline const Real* ptr() const |
---|
121 | { |
---|
122 | return &x; |
---|
123 | } |
---|
124 | |
---|
125 | /** Assigns the value of the other vector. |
---|
126 | @param |
---|
127 | rkVector The other vector |
---|
128 | */ |
---|
129 | inline Vector2& operator = ( const Vector2& rkVector ) |
---|
130 | { |
---|
131 | x = rkVector.x; |
---|
132 | y = rkVector.y; |
---|
133 | |
---|
134 | return *this; |
---|
135 | } |
---|
136 | |
---|
137 | inline Vector2& operator = ( const Real fScalar) |
---|
138 | { |
---|
139 | x = fScalar; |
---|
140 | y = fScalar; |
---|
141 | |
---|
142 | return *this; |
---|
143 | } |
---|
144 | |
---|
145 | inline bool operator == ( const Vector2& rkVector ) const |
---|
146 | { |
---|
147 | return ( x == rkVector.x && y == rkVector.y ); |
---|
148 | } |
---|
149 | |
---|
150 | inline bool operator != ( const Vector2& rkVector ) const |
---|
151 | { |
---|
152 | return ( x != rkVector.x || y != rkVector.y ); |
---|
153 | } |
---|
154 | |
---|
155 | // arithmetic operations |
---|
156 | inline Vector2 operator + ( const Vector2& rkVector ) const |
---|
157 | { |
---|
158 | return Vector2( |
---|
159 | x + rkVector.x, |
---|
160 | y + rkVector.y); |
---|
161 | } |
---|
162 | |
---|
163 | inline Vector2 operator - ( const Vector2& rkVector ) const |
---|
164 | { |
---|
165 | return Vector2( |
---|
166 | x - rkVector.x, |
---|
167 | y - rkVector.y); |
---|
168 | } |
---|
169 | |
---|
170 | inline Vector2 operator * ( const Real fScalar ) const |
---|
171 | { |
---|
172 | return Vector2( |
---|
173 | x * fScalar, |
---|
174 | y * fScalar); |
---|
175 | } |
---|
176 | |
---|
177 | inline Vector2 operator * ( const Vector2& rhs) const |
---|
178 | { |
---|
179 | return Vector2( |
---|
180 | x * rhs.x, |
---|
181 | y * rhs.y); |
---|
182 | } |
---|
183 | |
---|
184 | inline Vector2 operator / ( const Real fScalar ) const |
---|
185 | { |
---|
186 | assert( fScalar != 0.0 ); |
---|
187 | |
---|
188 | Real fInv = 1.0f / fScalar; |
---|
189 | |
---|
190 | return Vector2( |
---|
191 | x * fInv, |
---|
192 | y * fInv); |
---|
193 | } |
---|
194 | |
---|
195 | inline Vector2 operator / ( const Vector2& rhs) const |
---|
196 | { |
---|
197 | return Vector2( |
---|
198 | x / rhs.x, |
---|
199 | y / rhs.y); |
---|
200 | } |
---|
201 | |
---|
202 | inline const Vector2& operator + () const |
---|
203 | { |
---|
204 | return *this; |
---|
205 | } |
---|
206 | |
---|
207 | inline Vector2 operator - () const |
---|
208 | { |
---|
209 | return Vector2(-x, -y); |
---|
210 | } |
---|
211 | |
---|
212 | // overloaded operators to help Vector2 |
---|
213 | inline friend Vector2 operator * ( const Real fScalar, const Vector2& rkVector ) |
---|
214 | { |
---|
215 | return Vector2( |
---|
216 | fScalar * rkVector.x, |
---|
217 | fScalar * rkVector.y); |
---|
218 | } |
---|
219 | |
---|
220 | inline friend Vector2 operator / ( const Real fScalar, const Vector2& rkVector ) |
---|
221 | { |
---|
222 | return Vector2( |
---|
223 | fScalar / rkVector.x, |
---|
224 | fScalar / rkVector.y); |
---|
225 | } |
---|
226 | |
---|
227 | inline friend Vector2 operator + (const Vector2& lhs, const Real rhs) |
---|
228 | { |
---|
229 | return Vector2( |
---|
230 | lhs.x + rhs, |
---|
231 | lhs.y + rhs); |
---|
232 | } |
---|
233 | |
---|
234 | inline friend Vector2 operator + (const Real lhs, const Vector2& rhs) |
---|
235 | { |
---|
236 | return Vector2( |
---|
237 | lhs + rhs.x, |
---|
238 | lhs + rhs.y); |
---|
239 | } |
---|
240 | |
---|
241 | inline friend Vector2 operator - (const Vector2& lhs, const Real rhs) |
---|
242 | { |
---|
243 | return Vector2( |
---|
244 | lhs.x - rhs, |
---|
245 | lhs.y - rhs); |
---|
246 | } |
---|
247 | |
---|
248 | inline friend Vector2 operator - (const Real lhs, const Vector2& rhs) |
---|
249 | { |
---|
250 | return Vector2( |
---|
251 | lhs - rhs.x, |
---|
252 | lhs - rhs.y); |
---|
253 | } |
---|
254 | |
---|
255 | // arithmetic updates |
---|
256 | inline Vector2& operator += ( const Vector2& rkVector ) |
---|
257 | { |
---|
258 | x += rkVector.x; |
---|
259 | y += rkVector.y; |
---|
260 | |
---|
261 | return *this; |
---|
262 | } |
---|
263 | |
---|
264 | inline Vector2& operator += ( const Real fScaler ) |
---|
265 | { |
---|
266 | x += fScaler; |
---|
267 | y += fScaler; |
---|
268 | |
---|
269 | return *this; |
---|
270 | } |
---|
271 | |
---|
272 | inline Vector2& operator -= ( const Vector2& rkVector ) |
---|
273 | { |
---|
274 | x -= rkVector.x; |
---|
275 | y -= rkVector.y; |
---|
276 | |
---|
277 | return *this; |
---|
278 | } |
---|
279 | |
---|
280 | inline Vector2& operator -= ( const Real fScaler ) |
---|
281 | { |
---|
282 | x -= fScaler; |
---|
283 | y -= fScaler; |
---|
284 | |
---|
285 | return *this; |
---|
286 | } |
---|
287 | |
---|
288 | inline Vector2& operator *= ( const Real fScalar ) |
---|
289 | { |
---|
290 | x *= fScalar; |
---|
291 | y *= fScalar; |
---|
292 | |
---|
293 | return *this; |
---|
294 | } |
---|
295 | |
---|
296 | inline Vector2& operator *= ( const Vector2& rkVector ) |
---|
297 | { |
---|
298 | x *= rkVector.x; |
---|
299 | y *= rkVector.y; |
---|
300 | |
---|
301 | return *this; |
---|
302 | } |
---|
303 | |
---|
304 | inline Vector2& operator /= ( const Real fScalar ) |
---|
305 | { |
---|
306 | assert( fScalar != 0.0 ); |
---|
307 | |
---|
308 | Real fInv = 1.0f / fScalar; |
---|
309 | |
---|
310 | x *= fInv; |
---|
311 | y *= fInv; |
---|
312 | |
---|
313 | return *this; |
---|
314 | } |
---|
315 | |
---|
316 | inline Vector2& operator /= ( const Vector2& rkVector ) |
---|
317 | { |
---|
318 | x /= rkVector.x; |
---|
319 | y /= rkVector.y; |
---|
320 | |
---|
321 | return *this; |
---|
322 | } |
---|
323 | |
---|
324 | /** Returns the length (magnitude) of the vector. |
---|
325 | @warning |
---|
326 | This operation requires a square root and is expensive in |
---|
327 | terms of CPU operations. If you don't need to know the exact |
---|
328 | length (e.g. for just comparing lengths) use squaredLength() |
---|
329 | instead. |
---|
330 | */ |
---|
331 | inline Real length () const |
---|
332 | { |
---|
333 | return Math::Sqrt( x * x + y * y ); |
---|
334 | } |
---|
335 | |
---|
336 | /** Returns the square of the length(magnitude) of the vector. |
---|
337 | @remarks |
---|
338 | This method is for efficiency - calculating the actual |
---|
339 | length of a vector requires a square root, which is expensive |
---|
340 | in terms of the operations required. This method returns the |
---|
341 | square of the length of the vector, i.e. the same as the |
---|
342 | length but before the square root is taken. Use this if you |
---|
343 | want to find the longest / shortest vector without incurring |
---|
344 | the square root. |
---|
345 | */ |
---|
346 | inline Real squaredLength () const |
---|
347 | { |
---|
348 | return x * x + y * y; |
---|
349 | } |
---|
350 | |
---|
351 | /** Returns the distance to another vector. |
---|
352 | @warning |
---|
353 | This operation requires a square root and is expensive in |
---|
354 | terms of CPU operations. If you don't need to know the exact |
---|
355 | distance (e.g. for just comparing distances) use squaredDistance() |
---|
356 | instead. |
---|
357 | */ |
---|
358 | inline Real distance(const Vector2& rhs) const |
---|
359 | { |
---|
360 | return (*this - rhs).length(); |
---|
361 | } |
---|
362 | |
---|
363 | /** Returns the square of the distance to another vector. |
---|
364 | @remarks |
---|
365 | This method is for efficiency - calculating the actual |
---|
366 | distance to another vector requires a square root, which is |
---|
367 | expensive in terms of the operations required. This method |
---|
368 | returns the square of the distance to another vector, i.e. |
---|
369 | the same as the distance but before the square root is taken. |
---|
370 | Use this if you want to find the longest / shortest distance |
---|
371 | without incurring the square root. |
---|
372 | */ |
---|
373 | inline Real squaredDistance(const Vector2& rhs) const |
---|
374 | { |
---|
375 | return (*this - rhs).squaredLength(); |
---|
376 | } |
---|
377 | |
---|
378 | /** Calculates the dot (scalar) product of this vector with another. |
---|
379 | @remarks |
---|
380 | The dot product can be used to calculate the angle between 2 |
---|
381 | vectors. If both are unit vectors, the dot product is the |
---|
382 | cosine of the angle; otherwise the dot product must be |
---|
383 | divided by the product of the lengths of both vectors to get |
---|
384 | the cosine of the angle. This result can further be used to |
---|
385 | calculate the distance of a point from a plane. |
---|
386 | @param |
---|
387 | vec Vector with which to calculate the dot product (together |
---|
388 | with this one). |
---|
389 | @return |
---|
390 | A float representing the dot product value. |
---|
391 | */ |
---|
392 | inline Real dotProduct(const Vector2& vec) const |
---|
393 | { |
---|
394 | return x * vec.x + y * vec.y; |
---|
395 | } |
---|
396 | |
---|
397 | /** Normalises the vector. |
---|
398 | @remarks |
---|
399 | This method normalises the vector such that it's |
---|
400 | length / magnitude is 1. The result is called a unit vector. |
---|
401 | @note |
---|
402 | This function will not crash for zero-sized vectors, but there |
---|
403 | will be no changes made to their components. |
---|
404 | @return The previous length of the vector. |
---|
405 | */ |
---|
406 | |
---|
407 | inline Real normalise() |
---|
408 | { |
---|
409 | Real fLength = Math::Sqrt( x * x + y * y); |
---|
410 | |
---|
411 | // Will also work for zero-sized vectors, but will change nothing |
---|
412 | // We're not using epsilons because we don't need to. |
---|
413 | // Read http://www.ogre3d.org/forums/viewtopic.php?f=4&t=61259 |
---|
414 | if ( fLength > Real(0.0f) ) |
---|
415 | { |
---|
416 | Real fInvLength = 1.0f / fLength; |
---|
417 | x *= fInvLength; |
---|
418 | y *= fInvLength; |
---|
419 | } |
---|
420 | |
---|
421 | return fLength; |
---|
422 | } |
---|
423 | |
---|
424 | /** Returns a vector at a point half way between this and the passed |
---|
425 | in vector. |
---|
426 | */ |
---|
427 | inline Vector2 midPoint( const Vector2& vec ) const |
---|
428 | { |
---|
429 | return Vector2( |
---|
430 | ( x + vec.x ) * 0.5f, |
---|
431 | ( y + vec.y ) * 0.5f ); |
---|
432 | } |
---|
433 | |
---|
434 | /** Returns true if the vector's scalar components are all greater |
---|
435 | that the ones of the vector it is compared against. |
---|
436 | */ |
---|
437 | inline bool operator < ( const Vector2& rhs ) const |
---|
438 | { |
---|
439 | if( x < rhs.x && y < rhs.y ) |
---|
440 | return true; |
---|
441 | return false; |
---|
442 | } |
---|
443 | |
---|
444 | /** Returns true if the vector's scalar components are all smaller |
---|
445 | that the ones of the vector it is compared against. |
---|
446 | */ |
---|
447 | inline bool operator > ( const Vector2& rhs ) const |
---|
448 | { |
---|
449 | if( x > rhs.x && y > rhs.y ) |
---|
450 | return true; |
---|
451 | return false; |
---|
452 | } |
---|
453 | |
---|
454 | /** Sets this vector's components to the minimum of its own and the |
---|
455 | ones of the passed in vector. |
---|
456 | @remarks |
---|
457 | 'Minimum' in this case means the combination of the lowest |
---|
458 | value of x, y and z from both vectors. Lowest is taken just |
---|
459 | numerically, not magnitude, so -1 < 0. |
---|
460 | */ |
---|
461 | inline void makeFloor( const Vector2& cmp ) |
---|
462 | { |
---|
463 | if( cmp.x < x ) x = cmp.x; |
---|
464 | if( cmp.y < y ) y = cmp.y; |
---|
465 | } |
---|
466 | |
---|
467 | /** Sets this vector's components to the maximum of its own and the |
---|
468 | ones of the passed in vector. |
---|
469 | @remarks |
---|
470 | 'Maximum' in this case means the combination of the highest |
---|
471 | value of x, y and z from both vectors. Highest is taken just |
---|
472 | numerically, not magnitude, so 1 > -3. |
---|
473 | */ |
---|
474 | inline void makeCeil( const Vector2& cmp ) |
---|
475 | { |
---|
476 | if( cmp.x > x ) x = cmp.x; |
---|
477 | if( cmp.y > y ) y = cmp.y; |
---|
478 | } |
---|
479 | |
---|
480 | /** Generates a vector perpendicular to this vector (eg an 'up' vector). |
---|
481 | @remarks |
---|
482 | This method will return a vector which is perpendicular to this |
---|
483 | vector. There are an infinite number of possibilities but this |
---|
484 | method will guarantee to generate one of them. If you need more |
---|
485 | control you should use the Quaternion class. |
---|
486 | */ |
---|
487 | inline Vector2 perpendicular(void) const |
---|
488 | { |
---|
489 | return Vector2 (-y, x); |
---|
490 | } |
---|
491 | |
---|
492 | /** Calculates the 2 dimensional cross-product of 2 vectors, which results |
---|
493 | in a single floating point value which is 2 times the area of the triangle. |
---|
494 | */ |
---|
495 | inline Real crossProduct( const Vector2& rkVector ) const |
---|
496 | { |
---|
497 | return x * rkVector.y - y * rkVector.x; |
---|
498 | } |
---|
499 | |
---|
500 | /** Generates a new random vector which deviates from this vector by a |
---|
501 | given angle in a random direction. |
---|
502 | @remarks |
---|
503 | This method assumes that the random number generator has already |
---|
504 | been seeded appropriately. |
---|
505 | @param angle |
---|
506 | The angle at which to deviate in radians |
---|
507 | @return |
---|
508 | A random vector which deviates from this vector by angle. This |
---|
509 | vector will not be normalised, normalise it if you wish |
---|
510 | afterwards. |
---|
511 | */ |
---|
512 | inline Vector2 randomDeviant(Radian angle) const |
---|
513 | { |
---|
514 | angle *= Math::RangeRandom(-1, 1); |
---|
515 | Real cosa = Math::Cos(angle); |
---|
516 | Real sina = Math::Sin(angle); |
---|
517 | return Vector2(cosa * x - sina * y, |
---|
518 | sina * x + cosa * y); |
---|
519 | } |
---|
520 | |
---|
521 | /** Returns true if this vector is zero length. */ |
---|
522 | inline bool isZeroLength(void) const |
---|
523 | { |
---|
524 | Real sqlen = (x * x) + (y * y); |
---|
525 | return (sqlen < (1e-06 * 1e-06)); |
---|
526 | |
---|
527 | } |
---|
528 | |
---|
529 | /** As normalise, except that this vector is unaffected and the |
---|
530 | normalised vector is returned as a copy. */ |
---|
531 | inline Vector2 normalisedCopy(void) const |
---|
532 | { |
---|
533 | Vector2 ret = *this; |
---|
534 | ret.normalise(); |
---|
535 | return ret; |
---|
536 | } |
---|
537 | |
---|
538 | /** Calculates a reflection vector to the plane with the given normal . |
---|
539 | @remarks NB assumes 'this' is pointing AWAY FROM the plane, invert if it is not. |
---|
540 | */ |
---|
541 | inline Vector2 reflect(const Vector2& normal) const |
---|
542 | { |
---|
543 | return Vector2( *this - ( 2 * this->dotProduct(normal) * normal ) ); |
---|
544 | } |
---|
545 | |
---|
546 | /// Check whether this vector contains valid values |
---|
547 | inline bool isNaN() const |
---|
548 | { |
---|
549 | return Math::isNaN(x) || Math::isNaN(y); |
---|
550 | } |
---|
551 | |
---|
552 | /** Gets the angle between 2 vectors. |
---|
553 | @remarks |
---|
554 | Vectors do not have to be unit-length but must represent directions. |
---|
555 | */ |
---|
556 | inline Ogre::Radian angleBetween(const Ogre::Vector2& other) const |
---|
557 | { |
---|
558 | Ogre::Real lenProduct = length() * other.length(); |
---|
559 | // Divide by zero check |
---|
560 | if(lenProduct < 1e-6f) |
---|
561 | lenProduct = 1e-6f; |
---|
562 | |
---|
563 | Ogre::Real f = dotProduct(other) / lenProduct; |
---|
564 | |
---|
565 | f = Ogre::Math::Clamp(f, (Ogre::Real)-1.0, (Ogre::Real)1.0); |
---|
566 | return Ogre::Math::ACos(f); |
---|
567 | } |
---|
568 | |
---|
569 | /** Gets the oriented angle between 2 vectors. |
---|
570 | @remarks |
---|
571 | Vectors do not have to be unit-length but must represent directions. |
---|
572 | The angle is comprised between 0 and 2 PI. |
---|
573 | */ |
---|
574 | inline Ogre::Radian angleTo(const Ogre::Vector2& other) const |
---|
575 | { |
---|
576 | Ogre::Radian angle = angleBetween(other); |
---|
577 | |
---|
578 | if (crossProduct(other)<0) |
---|
579 | angle = (Ogre::Radian)Ogre::Math::TWO_PI - angle; |
---|
580 | |
---|
581 | return angle; |
---|
582 | } |
---|
583 | |
---|
584 | // special points |
---|
585 | static const Vector2 ZERO; |
---|
586 | static const Vector2 UNIT_X; |
---|
587 | static const Vector2 UNIT_Y; |
---|
588 | static const Vector2 NEGATIVE_UNIT_X; |
---|
589 | static const Vector2 NEGATIVE_UNIT_Y; |
---|
590 | static const Vector2 UNIT_SCALE; |
---|
591 | |
---|
592 | /** Function for writing to a stream. |
---|
593 | */ |
---|
594 | inline _OgreExport friend std::ostream& operator << |
---|
595 | ( std::ostream& o, const Vector2& v ) |
---|
596 | { |
---|
597 | o << "Vector2(" << v.x << ", " << v.y << ")"; |
---|
598 | return o; |
---|
599 | } |
---|
600 | }; |
---|
601 | /** @} */ |
---|
602 | /** @} */ |
---|
603 | |
---|
604 | } |
---|
605 | #endif |
---|