[148] | 1 | /* |
---|
| 2 | ----------------------------------------------------------------------------- |
---|
| 3 | This source file is part of OGRE |
---|
| 4 | (Object-oriented Graphics Rendering Engine) |
---|
| 5 | For the latest info, see http://www.ogre3d.org/ |
---|
| 6 | |
---|
| 7 | Copyright (c) 2000-2013 Torus Knot Software Ltd |
---|
| 8 | |
---|
| 9 | Permission is hereby granted, free of charge, to any person obtaining a copy |
---|
| 10 | of this software and associated documentation files (the "Software"), to deal |
---|
| 11 | in the Software without restriction, including without limitation the rights |
---|
| 12 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
---|
| 13 | copies of the Software, and to permit persons to whom the Software is |
---|
| 14 | furnished to do so, subject to the following conditions: |
---|
| 15 | |
---|
| 16 | The above copyright notice and this permission notice shall be included in |
---|
| 17 | all copies or substantial portions of the Software. |
---|
| 18 | |
---|
| 19 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
---|
| 20 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
---|
| 21 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
---|
| 22 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
---|
| 23 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
---|
| 24 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
---|
| 25 | THE SOFTWARE. |
---|
| 26 | ----------------------------------------------------------------------------- |
---|
| 27 | */ |
---|
| 28 | #ifndef __Vector3_H__ |
---|
| 29 | #define __Vector3_H__ |
---|
| 30 | |
---|
| 31 | #include "OgrePrerequisites.h" |
---|
| 32 | #include "OgreMath.h" |
---|
| 33 | #include "OgreQuaternion.h" |
---|
| 34 | |
---|
| 35 | namespace Ogre |
---|
| 36 | { |
---|
| 37 | |
---|
| 38 | /** \addtogroup Core |
---|
| 39 | * @{ |
---|
| 40 | */ |
---|
| 41 | /** \addtogroup Math |
---|
| 42 | * @{ |
---|
| 43 | */ |
---|
| 44 | /** Standard 3-dimensional vector. |
---|
| 45 | @remarks |
---|
| 46 | A direction in 3D space represented as distances along the 3 |
---|
| 47 | orthogonal axes (x, y, z). Note that positions, directions and |
---|
| 48 | scaling factors can be represented by a vector, depending on how |
---|
| 49 | you interpret the values. |
---|
| 50 | */ |
---|
| 51 | class _OgreExport Vector3 |
---|
| 52 | { |
---|
| 53 | public: |
---|
| 54 | Real x, y, z; |
---|
| 55 | |
---|
| 56 | public: |
---|
| 57 | /** Default constructor. |
---|
| 58 | @note |
---|
| 59 | It does <b>NOT</b> initialize the vector for efficiency. |
---|
| 60 | */ |
---|
| 61 | inline Vector3() |
---|
| 62 | { |
---|
| 63 | } |
---|
| 64 | |
---|
| 65 | inline Vector3( const Real fX, const Real fY, const Real fZ ) |
---|
| 66 | : x( fX ), y( fY ), z( fZ ) |
---|
| 67 | { |
---|
| 68 | } |
---|
| 69 | |
---|
| 70 | inline explicit Vector3( const Real afCoordinate[3] ) |
---|
| 71 | : x( afCoordinate[0] ), |
---|
| 72 | y( afCoordinate[1] ), |
---|
| 73 | z( afCoordinate[2] ) |
---|
| 74 | { |
---|
| 75 | } |
---|
| 76 | |
---|
| 77 | inline explicit Vector3( const int afCoordinate[3] ) |
---|
| 78 | { |
---|
| 79 | x = (Real)afCoordinate[0]; |
---|
| 80 | y = (Real)afCoordinate[1]; |
---|
| 81 | z = (Real)afCoordinate[2]; |
---|
| 82 | } |
---|
| 83 | |
---|
| 84 | inline explicit Vector3( Real* const r ) |
---|
| 85 | : x( r[0] ), y( r[1] ), z( r[2] ) |
---|
| 86 | { |
---|
| 87 | } |
---|
| 88 | |
---|
| 89 | inline explicit Vector3( const Real scaler ) |
---|
| 90 | : x( scaler ) |
---|
| 91 | , y( scaler ) |
---|
| 92 | , z( scaler ) |
---|
| 93 | { |
---|
| 94 | } |
---|
| 95 | |
---|
| 96 | |
---|
| 97 | /** Exchange the contents of this vector with another. |
---|
| 98 | */ |
---|
| 99 | inline void swap(Vector3& other) |
---|
| 100 | { |
---|
| 101 | std::swap(x, other.x); |
---|
| 102 | std::swap(y, other.y); |
---|
| 103 | std::swap(z, other.z); |
---|
| 104 | } |
---|
| 105 | |
---|
| 106 | inline Real operator [] ( const size_t i ) const |
---|
| 107 | { |
---|
| 108 | assert( i < 3 ); |
---|
| 109 | |
---|
| 110 | return *(&x+i); |
---|
| 111 | } |
---|
| 112 | |
---|
| 113 | inline Real& operator [] ( const size_t i ) |
---|
| 114 | { |
---|
| 115 | assert( i < 3 ); |
---|
| 116 | |
---|
| 117 | return *(&x+i); |
---|
| 118 | } |
---|
| 119 | /// Pointer accessor for direct copying |
---|
| 120 | inline Real* ptr() |
---|
| 121 | { |
---|
| 122 | return &x; |
---|
| 123 | } |
---|
| 124 | /// Pointer accessor for direct copying |
---|
| 125 | inline const Real* ptr() const |
---|
| 126 | { |
---|
| 127 | return &x; |
---|
| 128 | } |
---|
| 129 | |
---|
| 130 | /** Assigns the value of the other vector. |
---|
| 131 | @param |
---|
| 132 | rkVector The other vector |
---|
| 133 | */ |
---|
| 134 | inline Vector3& operator = ( const Vector3& rkVector ) |
---|
| 135 | { |
---|
| 136 | x = rkVector.x; |
---|
| 137 | y = rkVector.y; |
---|
| 138 | z = rkVector.z; |
---|
| 139 | |
---|
| 140 | return *this; |
---|
| 141 | } |
---|
| 142 | |
---|
| 143 | inline Vector3& operator = ( const Real fScaler ) |
---|
| 144 | { |
---|
| 145 | x = fScaler; |
---|
| 146 | y = fScaler; |
---|
| 147 | z = fScaler; |
---|
| 148 | |
---|
| 149 | return *this; |
---|
| 150 | } |
---|
| 151 | |
---|
| 152 | inline bool operator == ( const Vector3& rkVector ) const |
---|
| 153 | { |
---|
| 154 | return ( x == rkVector.x && y == rkVector.y && z == rkVector.z ); |
---|
| 155 | } |
---|
| 156 | |
---|
| 157 | inline bool operator != ( const Vector3& rkVector ) const |
---|
| 158 | { |
---|
| 159 | return ( x != rkVector.x || y != rkVector.y || z != rkVector.z ); |
---|
| 160 | } |
---|
| 161 | |
---|
| 162 | // arithmetic operations |
---|
| 163 | inline Vector3 operator + ( const Vector3& rkVector ) const |
---|
| 164 | { |
---|
| 165 | return Vector3( |
---|
| 166 | x + rkVector.x, |
---|
| 167 | y + rkVector.y, |
---|
| 168 | z + rkVector.z); |
---|
| 169 | } |
---|
| 170 | |
---|
| 171 | inline Vector3 operator - ( const Vector3& rkVector ) const |
---|
| 172 | { |
---|
| 173 | return Vector3( |
---|
| 174 | x - rkVector.x, |
---|
| 175 | y - rkVector.y, |
---|
| 176 | z - rkVector.z); |
---|
| 177 | } |
---|
| 178 | |
---|
| 179 | inline Vector3 operator * ( const Real fScalar ) const |
---|
| 180 | { |
---|
| 181 | return Vector3( |
---|
| 182 | x * fScalar, |
---|
| 183 | y * fScalar, |
---|
| 184 | z * fScalar); |
---|
| 185 | } |
---|
| 186 | |
---|
| 187 | inline Vector3 operator * ( const Vector3& rhs) const |
---|
| 188 | { |
---|
| 189 | return Vector3( |
---|
| 190 | x * rhs.x, |
---|
| 191 | y * rhs.y, |
---|
| 192 | z * rhs.z); |
---|
| 193 | } |
---|
| 194 | |
---|
| 195 | inline Vector3 operator / ( const Real fScalar ) const |
---|
| 196 | { |
---|
| 197 | assert( fScalar != 0.0 ); |
---|
| 198 | |
---|
| 199 | Real fInv = 1.0f / fScalar; |
---|
| 200 | |
---|
| 201 | return Vector3( |
---|
| 202 | x * fInv, |
---|
| 203 | y * fInv, |
---|
| 204 | z * fInv); |
---|
| 205 | } |
---|
| 206 | |
---|
| 207 | inline Vector3 operator / ( const Vector3& rhs) const |
---|
| 208 | { |
---|
| 209 | return Vector3( |
---|
| 210 | x / rhs.x, |
---|
| 211 | y / rhs.y, |
---|
| 212 | z / rhs.z); |
---|
| 213 | } |
---|
| 214 | |
---|
| 215 | inline const Vector3& operator + () const |
---|
| 216 | { |
---|
| 217 | return *this; |
---|
| 218 | } |
---|
| 219 | |
---|
| 220 | inline Vector3 operator - () const |
---|
| 221 | { |
---|
| 222 | return Vector3(-x, -y, -z); |
---|
| 223 | } |
---|
| 224 | |
---|
| 225 | // overloaded operators to help Vector3 |
---|
| 226 | inline friend Vector3 operator * ( const Real fScalar, const Vector3& rkVector ) |
---|
| 227 | { |
---|
| 228 | return Vector3( |
---|
| 229 | fScalar * rkVector.x, |
---|
| 230 | fScalar * rkVector.y, |
---|
| 231 | fScalar * rkVector.z); |
---|
| 232 | } |
---|
| 233 | |
---|
| 234 | inline friend Vector3 operator / ( const Real fScalar, const Vector3& rkVector ) |
---|
| 235 | { |
---|
| 236 | return Vector3( |
---|
| 237 | fScalar / rkVector.x, |
---|
| 238 | fScalar / rkVector.y, |
---|
| 239 | fScalar / rkVector.z); |
---|
| 240 | } |
---|
| 241 | |
---|
| 242 | inline friend Vector3 operator + (const Vector3& lhs, const Real rhs) |
---|
| 243 | { |
---|
| 244 | return Vector3( |
---|
| 245 | lhs.x + rhs, |
---|
| 246 | lhs.y + rhs, |
---|
| 247 | lhs.z + rhs); |
---|
| 248 | } |
---|
| 249 | |
---|
| 250 | inline friend Vector3 operator + (const Real lhs, const Vector3& rhs) |
---|
| 251 | { |
---|
| 252 | return Vector3( |
---|
| 253 | lhs + rhs.x, |
---|
| 254 | lhs + rhs.y, |
---|
| 255 | lhs + rhs.z); |
---|
| 256 | } |
---|
| 257 | |
---|
| 258 | inline friend Vector3 operator - (const Vector3& lhs, const Real rhs) |
---|
| 259 | { |
---|
| 260 | return Vector3( |
---|
| 261 | lhs.x - rhs, |
---|
| 262 | lhs.y - rhs, |
---|
| 263 | lhs.z - rhs); |
---|
| 264 | } |
---|
| 265 | |
---|
| 266 | inline friend Vector3 operator - (const Real lhs, const Vector3& rhs) |
---|
| 267 | { |
---|
| 268 | return Vector3( |
---|
| 269 | lhs - rhs.x, |
---|
| 270 | lhs - rhs.y, |
---|
| 271 | lhs - rhs.z); |
---|
| 272 | } |
---|
| 273 | |
---|
| 274 | // arithmetic updates |
---|
| 275 | inline Vector3& operator += ( const Vector3& rkVector ) |
---|
| 276 | { |
---|
| 277 | x += rkVector.x; |
---|
| 278 | y += rkVector.y; |
---|
| 279 | z += rkVector.z; |
---|
| 280 | |
---|
| 281 | return *this; |
---|
| 282 | } |
---|
| 283 | |
---|
| 284 | inline Vector3& operator += ( const Real fScalar ) |
---|
| 285 | { |
---|
| 286 | x += fScalar; |
---|
| 287 | y += fScalar; |
---|
| 288 | z += fScalar; |
---|
| 289 | return *this; |
---|
| 290 | } |
---|
| 291 | |
---|
| 292 | inline Vector3& operator -= ( const Vector3& rkVector ) |
---|
| 293 | { |
---|
| 294 | x -= rkVector.x; |
---|
| 295 | y -= rkVector.y; |
---|
| 296 | z -= rkVector.z; |
---|
| 297 | |
---|
| 298 | return *this; |
---|
| 299 | } |
---|
| 300 | |
---|
| 301 | inline Vector3& operator -= ( const Real fScalar ) |
---|
| 302 | { |
---|
| 303 | x -= fScalar; |
---|
| 304 | y -= fScalar; |
---|
| 305 | z -= fScalar; |
---|
| 306 | return *this; |
---|
| 307 | } |
---|
| 308 | |
---|
| 309 | inline Vector3& operator *= ( const Real fScalar ) |
---|
| 310 | { |
---|
| 311 | x *= fScalar; |
---|
| 312 | y *= fScalar; |
---|
| 313 | z *= fScalar; |
---|
| 314 | return *this; |
---|
| 315 | } |
---|
| 316 | |
---|
| 317 | inline Vector3& operator *= ( const Vector3& rkVector ) |
---|
| 318 | { |
---|
| 319 | x *= rkVector.x; |
---|
| 320 | y *= rkVector.y; |
---|
| 321 | z *= rkVector.z; |
---|
| 322 | |
---|
| 323 | return *this; |
---|
| 324 | } |
---|
| 325 | |
---|
| 326 | inline Vector3& operator /= ( const Real fScalar ) |
---|
| 327 | { |
---|
| 328 | assert( fScalar != 0.0 ); |
---|
| 329 | |
---|
| 330 | Real fInv = 1.0f / fScalar; |
---|
| 331 | |
---|
| 332 | x *= fInv; |
---|
| 333 | y *= fInv; |
---|
| 334 | z *= fInv; |
---|
| 335 | |
---|
| 336 | return *this; |
---|
| 337 | } |
---|
| 338 | |
---|
| 339 | inline Vector3& operator /= ( const Vector3& rkVector ) |
---|
| 340 | { |
---|
| 341 | x /= rkVector.x; |
---|
| 342 | y /= rkVector.y; |
---|
| 343 | z /= rkVector.z; |
---|
| 344 | |
---|
| 345 | return *this; |
---|
| 346 | } |
---|
| 347 | |
---|
| 348 | |
---|
| 349 | /** Returns the length (magnitude) of the vector. |
---|
| 350 | @warning |
---|
| 351 | This operation requires a square root and is expensive in |
---|
| 352 | terms of CPU operations. If you don't need to know the exact |
---|
| 353 | length (e.g. for just comparing lengths) use squaredLength() |
---|
| 354 | instead. |
---|
| 355 | */ |
---|
| 356 | inline Real length () const |
---|
| 357 | { |
---|
| 358 | return Math::Sqrt( x * x + y * y + z * z ); |
---|
| 359 | } |
---|
| 360 | |
---|
| 361 | /** Returns the square of the length(magnitude) of the vector. |
---|
| 362 | @remarks |
---|
| 363 | This method is for efficiency - calculating the actual |
---|
| 364 | length of a vector requires a square root, which is expensive |
---|
| 365 | in terms of the operations required. This method returns the |
---|
| 366 | square of the length of the vector, i.e. the same as the |
---|
| 367 | length but before the square root is taken. Use this if you |
---|
| 368 | want to find the longest / shortest vector without incurring |
---|
| 369 | the square root. |
---|
| 370 | */ |
---|
| 371 | inline Real squaredLength () const |
---|
| 372 | { |
---|
| 373 | return x * x + y * y + z * z; |
---|
| 374 | } |
---|
| 375 | |
---|
| 376 | /** Returns the distance to another vector. |
---|
| 377 | @warning |
---|
| 378 | This operation requires a square root and is expensive in |
---|
| 379 | terms of CPU operations. If you don't need to know the exact |
---|
| 380 | distance (e.g. for just comparing distances) use squaredDistance() |
---|
| 381 | instead. |
---|
| 382 | */ |
---|
| 383 | inline Real distance(const Vector3& rhs) const |
---|
| 384 | { |
---|
| 385 | return (*this - rhs).length(); |
---|
| 386 | } |
---|
| 387 | |
---|
| 388 | /** Returns the square of the distance to another vector. |
---|
| 389 | @remarks |
---|
| 390 | This method is for efficiency - calculating the actual |
---|
| 391 | distance to another vector requires a square root, which is |
---|
| 392 | expensive in terms of the operations required. This method |
---|
| 393 | returns the square of the distance to another vector, i.e. |
---|
| 394 | the same as the distance but before the square root is taken. |
---|
| 395 | Use this if you want to find the longest / shortest distance |
---|
| 396 | without incurring the square root. |
---|
| 397 | */ |
---|
| 398 | inline Real squaredDistance(const Vector3& rhs) const |
---|
| 399 | { |
---|
| 400 | return (*this - rhs).squaredLength(); |
---|
| 401 | } |
---|
| 402 | |
---|
| 403 | /** Calculates the dot (scalar) product of this vector with another. |
---|
| 404 | @remarks |
---|
| 405 | The dot product can be used to calculate the angle between 2 |
---|
| 406 | vectors. If both are unit vectors, the dot product is the |
---|
| 407 | cosine of the angle; otherwise the dot product must be |
---|
| 408 | divided by the product of the lengths of both vectors to get |
---|
| 409 | the cosine of the angle. This result can further be used to |
---|
| 410 | calculate the distance of a point from a plane. |
---|
| 411 | @param |
---|
| 412 | vec Vector with which to calculate the dot product (together |
---|
| 413 | with this one). |
---|
| 414 | @return |
---|
| 415 | A float representing the dot product value. |
---|
| 416 | */ |
---|
| 417 | inline Real dotProduct(const Vector3& vec) const |
---|
| 418 | { |
---|
| 419 | return x * vec.x + y * vec.y + z * vec.z; |
---|
| 420 | } |
---|
| 421 | |
---|
| 422 | /** Calculates the absolute dot (scalar) product of this vector with another. |
---|
| 423 | @remarks |
---|
| 424 | This function work similar dotProduct, except it use absolute value |
---|
| 425 | of each component of the vector to computing. |
---|
| 426 | @param |
---|
| 427 | vec Vector with which to calculate the absolute dot product (together |
---|
| 428 | with this one). |
---|
| 429 | @return |
---|
| 430 | A Real representing the absolute dot product value. |
---|
| 431 | */ |
---|
| 432 | inline Real absDotProduct(const Vector3& vec) const |
---|
| 433 | { |
---|
| 434 | return Math::Abs(x * vec.x) + Math::Abs(y * vec.y) + Math::Abs(z * vec.z); |
---|
| 435 | } |
---|
| 436 | |
---|
| 437 | /** Normalises the vector. |
---|
| 438 | @remarks |
---|
| 439 | This method normalises the vector such that it's |
---|
| 440 | length / magnitude is 1. The result is called a unit vector. |
---|
| 441 | @note |
---|
| 442 | This function will not crash for zero-sized vectors, but there |
---|
| 443 | will be no changes made to their components. |
---|
| 444 | @return The previous length of the vector. |
---|
| 445 | */ |
---|
| 446 | inline Real normalise() |
---|
| 447 | { |
---|
| 448 | Real fLength = Math::Sqrt( x * x + y * y + z * z ); |
---|
| 449 | |
---|
| 450 | // Will also work for zero-sized vectors, but will change nothing |
---|
| 451 | // We're not using epsilons because we don't need to. |
---|
| 452 | // Read http://www.ogre3d.org/forums/viewtopic.php?f=4&t=61259 |
---|
| 453 | if ( fLength > Real(0.0f) ) |
---|
| 454 | { |
---|
| 455 | Real fInvLength = 1.0f / fLength; |
---|
| 456 | x *= fInvLength; |
---|
| 457 | y *= fInvLength; |
---|
| 458 | z *= fInvLength; |
---|
| 459 | } |
---|
| 460 | |
---|
| 461 | return fLength; |
---|
| 462 | } |
---|
| 463 | |
---|
| 464 | /** Calculates the cross-product of 2 vectors, i.e. the vector that |
---|
| 465 | lies perpendicular to them both. |
---|
| 466 | @remarks |
---|
| 467 | The cross-product is normally used to calculate the normal |
---|
| 468 | vector of a plane, by calculating the cross-product of 2 |
---|
| 469 | non-equivalent vectors which lie on the plane (e.g. 2 edges |
---|
| 470 | of a triangle). |
---|
| 471 | @param rkVector |
---|
| 472 | Vector which, together with this one, will be used to |
---|
| 473 | calculate the cross-product. |
---|
| 474 | @return |
---|
| 475 | A vector which is the result of the cross-product. This |
---|
| 476 | vector will <b>NOT</b> be normalised, to maximise efficiency |
---|
| 477 | - call Vector3::normalise on the result if you wish this to |
---|
| 478 | be done. As for which side the resultant vector will be on, the |
---|
| 479 | returned vector will be on the side from which the arc from 'this' |
---|
| 480 | to rkVector is anticlockwise, e.g. UNIT_Y.crossProduct(UNIT_Z) |
---|
| 481 | = UNIT_X, whilst UNIT_Z.crossProduct(UNIT_Y) = -UNIT_X. |
---|
| 482 | This is because OGRE uses a right-handed coordinate system. |
---|
| 483 | @par |
---|
| 484 | For a clearer explanation, look a the left and the bottom edges |
---|
| 485 | of your monitor's screen. Assume that the first vector is the |
---|
| 486 | left edge and the second vector is the bottom edge, both of |
---|
| 487 | them starting from the lower-left corner of the screen. The |
---|
| 488 | resulting vector is going to be perpendicular to both of them |
---|
| 489 | and will go <i>inside</i> the screen, towards the cathode tube |
---|
| 490 | (assuming you're using a CRT monitor, of course). |
---|
| 491 | */ |
---|
| 492 | inline Vector3 crossProduct( const Vector3& rkVector ) const |
---|
| 493 | { |
---|
| 494 | return Vector3( |
---|
| 495 | y * rkVector.z - z * rkVector.y, |
---|
| 496 | z * rkVector.x - x * rkVector.z, |
---|
| 497 | x * rkVector.y - y * rkVector.x); |
---|
| 498 | } |
---|
| 499 | |
---|
| 500 | /** Returns a vector at a point half way between this and the passed |
---|
| 501 | in vector. |
---|
| 502 | */ |
---|
| 503 | inline Vector3 midPoint( const Vector3& vec ) const |
---|
| 504 | { |
---|
| 505 | return Vector3( |
---|
| 506 | ( x + vec.x ) * 0.5f, |
---|
| 507 | ( y + vec.y ) * 0.5f, |
---|
| 508 | ( z + vec.z ) * 0.5f ); |
---|
| 509 | } |
---|
| 510 | |
---|
| 511 | /** Returns true if the vector's scalar components are all greater |
---|
| 512 | that the ones of the vector it is compared against. |
---|
| 513 | */ |
---|
| 514 | inline bool operator < ( const Vector3& rhs ) const |
---|
| 515 | { |
---|
| 516 | if( x < rhs.x && y < rhs.y && z < rhs.z ) |
---|
| 517 | return true; |
---|
| 518 | return false; |
---|
| 519 | } |
---|
| 520 | |
---|
| 521 | /** Returns true if the vector's scalar components are all smaller |
---|
| 522 | that the ones of the vector it is compared against. |
---|
| 523 | */ |
---|
| 524 | inline bool operator > ( const Vector3& rhs ) const |
---|
| 525 | { |
---|
| 526 | if( x > rhs.x && y > rhs.y && z > rhs.z ) |
---|
| 527 | return true; |
---|
| 528 | return false; |
---|
| 529 | } |
---|
| 530 | |
---|
| 531 | /** Sets this vector's components to the minimum of its own and the |
---|
| 532 | ones of the passed in vector. |
---|
| 533 | @remarks |
---|
| 534 | 'Minimum' in this case means the combination of the lowest |
---|
| 535 | value of x, y and z from both vectors. Lowest is taken just |
---|
| 536 | numerically, not magnitude, so -1 < 0. |
---|
| 537 | */ |
---|
| 538 | inline void makeFloor( const Vector3& cmp ) |
---|
| 539 | { |
---|
| 540 | if( cmp.x < x ) x = cmp.x; |
---|
| 541 | if( cmp.y < y ) y = cmp.y; |
---|
| 542 | if( cmp.z < z ) z = cmp.z; |
---|
| 543 | } |
---|
| 544 | |
---|
| 545 | /** Sets this vector's components to the maximum of its own and the |
---|
| 546 | ones of the passed in vector. |
---|
| 547 | @remarks |
---|
| 548 | 'Maximum' in this case means the combination of the highest |
---|
| 549 | value of x, y and z from both vectors. Highest is taken just |
---|
| 550 | numerically, not magnitude, so 1 > -3. |
---|
| 551 | */ |
---|
| 552 | inline void makeCeil( const Vector3& cmp ) |
---|
| 553 | { |
---|
| 554 | if( cmp.x > x ) x = cmp.x; |
---|
| 555 | if( cmp.y > y ) y = cmp.y; |
---|
| 556 | if( cmp.z > z ) z = cmp.z; |
---|
| 557 | } |
---|
| 558 | |
---|
| 559 | /** Generates a vector perpendicular to this vector (eg an 'up' vector). |
---|
| 560 | @remarks |
---|
| 561 | This method will return a vector which is perpendicular to this |
---|
| 562 | vector. There are an infinite number of possibilities but this |
---|
| 563 | method will guarantee to generate one of them. If you need more |
---|
| 564 | control you should use the Quaternion class. |
---|
| 565 | */ |
---|
| 566 | inline Vector3 perpendicular(void) const |
---|
| 567 | { |
---|
| 568 | static const Real fSquareZero = (Real)(1e-06 * 1e-06); |
---|
| 569 | |
---|
| 570 | Vector3 perp = this->crossProduct( Vector3::UNIT_X ); |
---|
| 571 | |
---|
| 572 | // Check length |
---|
| 573 | if( perp.squaredLength() < fSquareZero ) |
---|
| 574 | { |
---|
| 575 | /* This vector is the Y axis multiplied by a scalar, so we have |
---|
| 576 | to use another axis. |
---|
| 577 | */ |
---|
| 578 | perp = this->crossProduct( Vector3::UNIT_Y ); |
---|
| 579 | } |
---|
| 580 | perp.normalise(); |
---|
| 581 | |
---|
| 582 | return perp; |
---|
| 583 | } |
---|
| 584 | /** Generates a new random vector which deviates from this vector by a |
---|
| 585 | given angle in a random direction. |
---|
| 586 | @remarks |
---|
| 587 | This method assumes that the random number generator has already |
---|
| 588 | been seeded appropriately. |
---|
| 589 | @param |
---|
| 590 | angle The angle at which to deviate |
---|
| 591 | @param |
---|
| 592 | up Any vector perpendicular to this one (which could generated |
---|
| 593 | by cross-product of this vector and any other non-colinear |
---|
| 594 | vector). If you choose not to provide this the function will |
---|
| 595 | derive one on it's own, however if you provide one yourself the |
---|
| 596 | function will be faster (this allows you to reuse up vectors if |
---|
| 597 | you call this method more than once) |
---|
| 598 | @return |
---|
| 599 | A random vector which deviates from this vector by angle. This |
---|
| 600 | vector will not be normalised, normalise it if you wish |
---|
| 601 | afterwards. |
---|
| 602 | */ |
---|
| 603 | inline Vector3 randomDeviant( |
---|
| 604 | const Radian& angle, |
---|
| 605 | const Vector3& up = Vector3::ZERO ) const |
---|
| 606 | { |
---|
| 607 | Vector3 newUp; |
---|
| 608 | |
---|
| 609 | if (up == Vector3::ZERO) |
---|
| 610 | { |
---|
| 611 | // Generate an up vector |
---|
| 612 | newUp = this->perpendicular(); |
---|
| 613 | } |
---|
| 614 | else |
---|
| 615 | { |
---|
| 616 | newUp = up; |
---|
| 617 | } |
---|
| 618 | |
---|
| 619 | // Rotate up vector by random amount around this |
---|
| 620 | Quaternion q; |
---|
| 621 | q.FromAngleAxis( Radian(Math::UnitRandom() * Math::TWO_PI), *this ); |
---|
| 622 | newUp = q * newUp; |
---|
| 623 | |
---|
| 624 | // Finally rotate this by given angle around randomised up |
---|
| 625 | q.FromAngleAxis( angle, newUp ); |
---|
| 626 | return q * (*this); |
---|
| 627 | } |
---|
| 628 | |
---|
| 629 | /** Gets the angle between 2 vectors. |
---|
| 630 | @remarks |
---|
| 631 | Vectors do not have to be unit-length but must represent directions. |
---|
| 632 | */ |
---|
| 633 | inline Radian angleBetween(const Vector3& dest) const |
---|
| 634 | { |
---|
| 635 | Real lenProduct = length() * dest.length(); |
---|
| 636 | |
---|
| 637 | // Divide by zero check |
---|
| 638 | if(lenProduct < 1e-6f) |
---|
| 639 | lenProduct = 1e-6f; |
---|
| 640 | |
---|
| 641 | Real f = dotProduct(dest) / lenProduct; |
---|
| 642 | |
---|
| 643 | f = Math::Clamp(f, (Real)-1.0, (Real)1.0); |
---|
| 644 | return Math::ACos(f); |
---|
| 645 | |
---|
| 646 | } |
---|
| 647 | /** Gets the shortest arc quaternion to rotate this vector to the destination |
---|
| 648 | vector. |
---|
| 649 | @remarks |
---|
| 650 | If you call this with a dest vector that is close to the inverse |
---|
| 651 | of this vector, we will rotate 180 degrees around the 'fallbackAxis' |
---|
| 652 | (if specified, or a generated axis if not) since in this case |
---|
| 653 | ANY axis of rotation is valid. |
---|
| 654 | */ |
---|
| 655 | Quaternion getRotationTo(const Vector3& dest, |
---|
| 656 | const Vector3& fallbackAxis = Vector3::ZERO) const |
---|
| 657 | { |
---|
| 658 | // Based on Stan Melax's article in Game Programming Gems |
---|
| 659 | Quaternion q; |
---|
| 660 | // Copy, since cannot modify local |
---|
| 661 | Vector3 v0 = *this; |
---|
| 662 | Vector3 v1 = dest; |
---|
| 663 | v0.normalise(); |
---|
| 664 | v1.normalise(); |
---|
| 665 | |
---|
| 666 | Real d = v0.dotProduct(v1); |
---|
| 667 | // If dot == 1, vectors are the same |
---|
| 668 | if (d >= 1.0f) |
---|
| 669 | { |
---|
| 670 | return Quaternion::IDENTITY; |
---|
| 671 | } |
---|
| 672 | if (d < (1e-6f - 1.0f)) |
---|
| 673 | { |
---|
| 674 | if (fallbackAxis != Vector3::ZERO) |
---|
| 675 | { |
---|
| 676 | // rotate 180 degrees about the fallback axis |
---|
| 677 | q.FromAngleAxis(Radian(Math::PI), fallbackAxis); |
---|
| 678 | } |
---|
| 679 | else |
---|
| 680 | { |
---|
| 681 | // Generate an axis |
---|
| 682 | Vector3 axis = Vector3::UNIT_X.crossProduct(*this); |
---|
| 683 | if (axis.isZeroLength()) // pick another if colinear |
---|
| 684 | axis = Vector3::UNIT_Y.crossProduct(*this); |
---|
| 685 | axis.normalise(); |
---|
| 686 | q.FromAngleAxis(Radian(Math::PI), axis); |
---|
| 687 | } |
---|
| 688 | } |
---|
| 689 | else |
---|
| 690 | { |
---|
| 691 | Real s = Math::Sqrt( (1+d)*2 ); |
---|
| 692 | Real invs = 1 / s; |
---|
| 693 | |
---|
| 694 | Vector3 c = v0.crossProduct(v1); |
---|
| 695 | |
---|
| 696 | q.x = c.x * invs; |
---|
| 697 | q.y = c.y * invs; |
---|
| 698 | q.z = c.z * invs; |
---|
| 699 | q.w = s * 0.5f; |
---|
| 700 | q.normalise(); |
---|
| 701 | } |
---|
| 702 | return q; |
---|
| 703 | } |
---|
| 704 | |
---|
| 705 | /** Returns true if this vector is zero length. */ |
---|
| 706 | inline bool isZeroLength(void) const |
---|
| 707 | { |
---|
| 708 | Real sqlen = (x * x) + (y * y) + (z * z); |
---|
| 709 | return (sqlen < (1e-06 * 1e-06)); |
---|
| 710 | |
---|
| 711 | } |
---|
| 712 | |
---|
| 713 | /** As normalise, except that this vector is unaffected and the |
---|
| 714 | normalised vector is returned as a copy. */ |
---|
| 715 | inline Vector3 normalisedCopy(void) const |
---|
| 716 | { |
---|
| 717 | Vector3 ret = *this; |
---|
| 718 | ret.normalise(); |
---|
| 719 | return ret; |
---|
| 720 | } |
---|
| 721 | |
---|
| 722 | /** Calculates a reflection vector to the plane with the given normal . |
---|
| 723 | @remarks NB assumes 'this' is pointing AWAY FROM the plane, invert if it is not. |
---|
| 724 | */ |
---|
| 725 | inline Vector3 reflect(const Vector3& normal) const |
---|
| 726 | { |
---|
| 727 | return Vector3( *this - ( 2 * this->dotProduct(normal) * normal ) ); |
---|
| 728 | } |
---|
| 729 | |
---|
| 730 | /** Returns whether this vector is within a positional tolerance |
---|
| 731 | of another vector. |
---|
| 732 | @param rhs The vector to compare with |
---|
| 733 | @param tolerance The amount that each element of the vector may vary by |
---|
| 734 | and still be considered equal |
---|
| 735 | */ |
---|
| 736 | inline bool positionEquals(const Vector3& rhs, Real tolerance = 1e-03) const |
---|
| 737 | { |
---|
| 738 | return Math::RealEqual(x, rhs.x, tolerance) && |
---|
| 739 | Math::RealEqual(y, rhs.y, tolerance) && |
---|
| 740 | Math::RealEqual(z, rhs.z, tolerance); |
---|
| 741 | |
---|
| 742 | } |
---|
| 743 | |
---|
| 744 | /** Returns whether this vector is within a positional tolerance |
---|
| 745 | of another vector, also take scale of the vectors into account. |
---|
| 746 | @param rhs The vector to compare with |
---|
| 747 | @param tolerance The amount (related to the scale of vectors) that distance |
---|
| 748 | of the vector may vary by and still be considered close |
---|
| 749 | */ |
---|
| 750 | inline bool positionCloses(const Vector3& rhs, Real tolerance = 1e-03f) const |
---|
| 751 | { |
---|
| 752 | return squaredDistance(rhs) <= |
---|
| 753 | (squaredLength() + rhs.squaredLength()) * tolerance; |
---|
| 754 | } |
---|
| 755 | |
---|
| 756 | /** Returns whether this vector is within a directional tolerance |
---|
| 757 | of another vector. |
---|
| 758 | @param rhs The vector to compare with |
---|
| 759 | @param tolerance The maximum angle by which the vectors may vary and |
---|
| 760 | still be considered equal |
---|
| 761 | @note Both vectors should be normalised. |
---|
| 762 | */ |
---|
| 763 | inline bool directionEquals(const Vector3& rhs, |
---|
| 764 | const Radian& tolerance) const |
---|
| 765 | { |
---|
| 766 | Real dot = dotProduct(rhs); |
---|
| 767 | Radian angle = Math::ACos(dot); |
---|
| 768 | |
---|
| 769 | return Math::Abs(angle.valueRadians()) <= tolerance.valueRadians(); |
---|
| 770 | |
---|
| 771 | } |
---|
| 772 | |
---|
| 773 | /// Check whether this vector contains valid values |
---|
| 774 | inline bool isNaN() const |
---|
| 775 | { |
---|
| 776 | return Math::isNaN(x) || Math::isNaN(y) || Math::isNaN(z); |
---|
| 777 | } |
---|
| 778 | |
---|
| 779 | /// Extract the primary (dominant) axis from this direction vector |
---|
| 780 | inline Vector3 primaryAxis() const |
---|
| 781 | { |
---|
| 782 | Real absx = Math::Abs(x); |
---|
| 783 | Real absy = Math::Abs(y); |
---|
| 784 | Real absz = Math::Abs(z); |
---|
| 785 | if (absx > absy) |
---|
| 786 | if (absx > absz) |
---|
| 787 | return x > 0 ? Vector3::UNIT_X : Vector3::NEGATIVE_UNIT_X; |
---|
| 788 | else |
---|
| 789 | return z > 0 ? Vector3::UNIT_Z : Vector3::NEGATIVE_UNIT_Z; |
---|
| 790 | else // absx <= absy |
---|
| 791 | if (absy > absz) |
---|
| 792 | return y > 0 ? Vector3::UNIT_Y : Vector3::NEGATIVE_UNIT_Y; |
---|
| 793 | else |
---|
| 794 | return z > 0 ? Vector3::UNIT_Z : Vector3::NEGATIVE_UNIT_Z; |
---|
| 795 | |
---|
| 796 | |
---|
| 797 | } |
---|
| 798 | |
---|
| 799 | // special points |
---|
| 800 | static const Vector3 ZERO; |
---|
| 801 | static const Vector3 UNIT_X; |
---|
| 802 | static const Vector3 UNIT_Y; |
---|
| 803 | static const Vector3 UNIT_Z; |
---|
| 804 | static const Vector3 NEGATIVE_UNIT_X; |
---|
| 805 | static const Vector3 NEGATIVE_UNIT_Y; |
---|
| 806 | static const Vector3 NEGATIVE_UNIT_Z; |
---|
| 807 | static const Vector3 UNIT_SCALE; |
---|
| 808 | |
---|
| 809 | /** Function for writing to a stream. |
---|
| 810 | */ |
---|
| 811 | inline _OgreExport friend std::ostream& operator << |
---|
| 812 | ( std::ostream& o, const Vector3& v ) |
---|
| 813 | { |
---|
| 814 | o << "Vector3(" << v.x << ", " << v.y << ", " << v.z << ")"; |
---|
| 815 | return o; |
---|
| 816 | } |
---|
| 817 | }; |
---|
| 818 | /** @} */ |
---|
| 819 | /** @} */ |
---|
| 820 | |
---|
| 821 | } |
---|
| 822 | #endif |
---|