1 | /* |
---|
2 | *---------------------------------------------------------------------- |
---|
3 | * |
---|
4 | * tclStrToD.c -- |
---|
5 | * |
---|
6 | * This file contains a collection of procedures for managing conversions |
---|
7 | * to/from floating-point in Tcl. They include TclParseNumber, which |
---|
8 | * parses numbers from strings; TclDoubleDigits, which formats numbers |
---|
9 | * into strings of digits, and procedures for interconversion among |
---|
10 | * 'double' and 'mp_int' types. |
---|
11 | * |
---|
12 | * Copyright (c) 2005 by Kevin B. Kenny. All rights reserved. |
---|
13 | * |
---|
14 | * See the file "license.terms" for information on usage and redistribution of |
---|
15 | * this file, and for a DISCLAIMER OF ALL WARRANTIES. |
---|
16 | * |
---|
17 | * RCS: @(#) $Id: tclStrToD.c,v 1.33 2008/03/13 17:14:19 dgp Exp $ |
---|
18 | * |
---|
19 | *---------------------------------------------------------------------- |
---|
20 | */ |
---|
21 | |
---|
22 | #include <tclInt.h> |
---|
23 | #include <stdio.h> |
---|
24 | #include <stdlib.h> |
---|
25 | #include <float.h> |
---|
26 | #include <limits.h> |
---|
27 | #include <math.h> |
---|
28 | #include <ctype.h> |
---|
29 | #include <tommath.h> |
---|
30 | |
---|
31 | /* |
---|
32 | * Define KILL_OCTAL to suppress interpretation of numbers with leading zero |
---|
33 | * as octal. (Ceterum censeo: numeros octonarios delendos esse.) |
---|
34 | */ |
---|
35 | |
---|
36 | #undef KILL_OCTAL |
---|
37 | |
---|
38 | /* |
---|
39 | * This code supports (at least hypothetically), IBM, Cray, VAX and IEEE-754 |
---|
40 | * floating point; of these, only IEEE-754 can represent NaN. IEEE-754 can be |
---|
41 | * uniquely determined by radix and by the widths of significand and exponent. |
---|
42 | */ |
---|
43 | |
---|
44 | #if (FLT_RADIX == 2) && (DBL_MANT_DIG == 53) && (DBL_MAX_EXP == 1024) |
---|
45 | # define IEEE_FLOATING_POINT |
---|
46 | #endif |
---|
47 | |
---|
48 | /* |
---|
49 | * gcc on x86 needs access to rounding controls, because of a questionable |
---|
50 | * feature where it retains intermediate results as IEEE 'long double' values |
---|
51 | * somewhat unpredictably. It is tempting to include fpu_control.h, but that |
---|
52 | * file exists only on Linux; it is missing on Cygwin and MinGW. Most gcc-isms |
---|
53 | * and ix86-isms are factored out here. |
---|
54 | */ |
---|
55 | |
---|
56 | #if defined(__GNUC__) && defined(__i386) |
---|
57 | typedef unsigned int fpu_control_t __attribute__ ((__mode__ (__HI__))); |
---|
58 | #define _FPU_GETCW(cw) __asm__ __volatile__ ("fnstcw %0" : "=m" (*&cw)) |
---|
59 | #define _FPU_SETCW(cw) __asm__ __volatile__ ("fldcw %0" : : "m" (*&cw)) |
---|
60 | # define FPU_IEEE_ROUNDING 0x027f |
---|
61 | # define ADJUST_FPU_CONTROL_WORD |
---|
62 | #endif |
---|
63 | |
---|
64 | /* |
---|
65 | * HP's PA_RISC architecture uses 7ff4000000000000 to represent a quiet NaN. |
---|
66 | * Everyone else uses 7ff8000000000000. (Why, HP, why?) |
---|
67 | */ |
---|
68 | |
---|
69 | #ifdef __hppa |
---|
70 | # define NAN_START 0x7ff4 |
---|
71 | # define NAN_MASK (((Tcl_WideUInt) 1) << 50) |
---|
72 | #else |
---|
73 | # define NAN_START 0x7ff8 |
---|
74 | # define NAN_MASK (((Tcl_WideUInt) 1) << 51) |
---|
75 | #endif |
---|
76 | |
---|
77 | /* |
---|
78 | * Constants used by this file (most of which are only ever calculated at |
---|
79 | * runtime). |
---|
80 | */ |
---|
81 | |
---|
82 | static int maxpow10_wide; /* The powers of ten that can be represented |
---|
83 | * exactly as wide integers. */ |
---|
84 | static Tcl_WideUInt *pow10_wide; |
---|
85 | #define MAXPOW 22 |
---|
86 | static double pow10vals[MAXPOW+1]; /* The powers of ten that can be represented |
---|
87 | * exactly as IEEE754 doubles. */ |
---|
88 | static int mmaxpow; /* Largest power of ten that can be |
---|
89 | * represented exactly in a 'double'. */ |
---|
90 | static int log10_DIGIT_MAX; /* The number of decimal digits that fit in an |
---|
91 | * mp_digit. */ |
---|
92 | static int log2FLT_RADIX; /* Logarithm of the floating point radix. */ |
---|
93 | static int mantBits; /* Number of bits in a double's significand */ |
---|
94 | static mp_int pow5[9]; /* Table of powers of 5**(2**n), up to |
---|
95 | * 5**256 */ |
---|
96 | static double tiny; /* The smallest representable double */ |
---|
97 | static int maxDigits; /* The maximum number of digits to the left of |
---|
98 | * the decimal point of a double. */ |
---|
99 | static int minDigits; /* The maximum number of digits to the right |
---|
100 | * of the decimal point in a double. */ |
---|
101 | static int mantDIGIT; /* Number of mp_digit's needed to hold the |
---|
102 | * significand of a double. */ |
---|
103 | static const double pow_10_2_n[] = { /* Inexact higher powers of ten. */ |
---|
104 | 1.0, |
---|
105 | 100.0, |
---|
106 | 10000.0, |
---|
107 | 1.0e+8, |
---|
108 | 1.0e+16, |
---|
109 | 1.0e+32, |
---|
110 | 1.0e+64, |
---|
111 | 1.0e+128, |
---|
112 | 1.0e+256 |
---|
113 | }; |
---|
114 | static int n770_fp; /* Flag is 1 on Nokia N770 floating point. |
---|
115 | * Nokia's floating point has the words |
---|
116 | * reversed: if big-endian is 7654 3210, |
---|
117 | * and little-endian is 0123 4567, |
---|
118 | * then Nokia's FP is 4567 0123; |
---|
119 | * little-endian within the 32-bit words |
---|
120 | * but big-endian between them. */ |
---|
121 | |
---|
122 | /* |
---|
123 | * Static functions defined in this file. |
---|
124 | */ |
---|
125 | |
---|
126 | static double AbsoluteValue(double v, int *signum); |
---|
127 | static int AccumulateDecimalDigit(unsigned, int, |
---|
128 | Tcl_WideUInt *, mp_int *, int); |
---|
129 | static double BignumToBiasedFrExp(mp_int *big, int* machexp); |
---|
130 | static int GetIntegerTimesPower(double v, mp_int *r, int *e); |
---|
131 | static double MakeHighPrecisionDouble(int signum, |
---|
132 | mp_int *significand, int nSigDigs, int exponent); |
---|
133 | static double MakeLowPrecisionDouble(int signum, |
---|
134 | Tcl_WideUInt significand, int nSigDigs, |
---|
135 | int exponent); |
---|
136 | static double MakeNaN(int signum, Tcl_WideUInt tag); |
---|
137 | static Tcl_WideUInt Nokia770Twiddle(Tcl_WideUInt w); |
---|
138 | static double Pow10TimesFrExp(int exponent, double fraction, |
---|
139 | int *machexp); |
---|
140 | static double RefineApproximation(double approx, |
---|
141 | mp_int *exactSignificand, int exponent); |
---|
142 | static double SafeLdExp(double fraction, int exponent); |
---|
143 | |
---|
144 | /* |
---|
145 | *---------------------------------------------------------------------- |
---|
146 | * |
---|
147 | * TclParseNumber -- |
---|
148 | * |
---|
149 | * Scans bytes, interpreted as characters in Tcl's internal encoding, and |
---|
150 | * parses the longest prefix that is the string representation of a |
---|
151 | * number in a format recognized by Tcl. |
---|
152 | * |
---|
153 | * The arguments bytes, numBytes, and objPtr are the inputs which |
---|
154 | * determine the string to be parsed. If bytes is non-NULL, it points to |
---|
155 | * the first byte to be scanned. If bytes is NULL, then objPtr must be |
---|
156 | * non-NULL, and the string representation of objPtr will be scanned |
---|
157 | * (generated first, if necessary). The numBytes argument determines the |
---|
158 | * number of bytes to be scanned. If numBytes is negative, the first NUL |
---|
159 | * byte encountered will terminate the scan. If numBytes is non-negative, |
---|
160 | * then no more than numBytes bytes will be scanned. |
---|
161 | * |
---|
162 | * The argument flags is an input that controls the numeric formats |
---|
163 | * recognized by the parser. The flag bits are: |
---|
164 | * |
---|
165 | * - TCL_PARSE_INTEGER_ONLY: accept only integer values; reject |
---|
166 | * strings that denote floating point values (or accept only the |
---|
167 | * leading portion of them that are integer values). |
---|
168 | * - TCL_PARSE_SCAN_PREFIXES: ignore the prefixes 0b and 0o that are |
---|
169 | * not part of the [scan] command's vocabulary. Use only in |
---|
170 | * combination with TCL_PARSE_INTEGER_ONLY. |
---|
171 | * - TCL_PARSE_OCTAL_ONLY: parse only in the octal format, whether |
---|
172 | * or not a prefix is present that would lead to octal parsing. |
---|
173 | * Use only in combination with TCL_PARSE_INTEGER_ONLY. |
---|
174 | * - TCL_PARSE_HEXADECIMAL_ONLY: parse only in the hexadecimal format, |
---|
175 | * whether or not a prefix is present that would lead to |
---|
176 | * hexadecimal parsing. Use only in combination with |
---|
177 | * TCL_PARSE_INTEGER_ONLY. |
---|
178 | * - TCL_PARSE_DECIMAL_ONLY: parse only in the decimal format, no |
---|
179 | * matter whether a 0 prefix would normally force a different |
---|
180 | * base. |
---|
181 | * - TCL_PARSE_NO_WHITESPACE: reject any leading/trailing whitespace |
---|
182 | * |
---|
183 | * The arguments interp and expected are inputs that control error |
---|
184 | * message generation. If interp is NULL, no error message will be |
---|
185 | * generated. If interp is non-NULL, then expected must also be non-NULL. |
---|
186 | * When TCL_ERROR is returned, an error message will be left in the |
---|
187 | * result of interp, and the expected argument will appear in the error |
---|
188 | * message as the thing TclParseNumber expected, but failed to find in |
---|
189 | * the string. |
---|
190 | * |
---|
191 | * The arguments objPtr and endPtrPtr as well as the return code are the |
---|
192 | * outputs. |
---|
193 | * |
---|
194 | * When the parser cannot find any prefix of the string that matches a |
---|
195 | * format it is looking for, TCL_ERROR is returned and an error message |
---|
196 | * may be generated and returned as described above. The contents of |
---|
197 | * objPtr will not be changed. If endPtrPtr is non-NULL, a pointer to the |
---|
198 | * character in the string that terminated the scan will be written to |
---|
199 | * *endPtrPtr. |
---|
200 | * |
---|
201 | * When the parser determines that the entire string matches a format it |
---|
202 | * is looking for, TCL_OK is returned, and if objPtr is non-NULL, then |
---|
203 | * the internal rep and Tcl_ObjType of objPtr are set to the "canonical" |
---|
204 | * numeric value that matches the scanned string. If endPtrPtr is not |
---|
205 | * NULL, a pointer to the end of the string will be written to *endPtrPtr |
---|
206 | * (that is, either bytes+numBytes or a pointer to a terminating NUL |
---|
207 | * byte). |
---|
208 | * |
---|
209 | * When the parser determines that a partial string matches a format it |
---|
210 | * is looking for, the value of endPtrPtr determines what happens: |
---|
211 | * |
---|
212 | * - If endPtrPtr is NULL, then TCL_ERROR is returned, with error message |
---|
213 | * generation as above. |
---|
214 | * |
---|
215 | * - If endPtrPtr is non-NULL, then TCL_OK is returned and objPtr |
---|
216 | * internals are set as above. Also, a pointer to the first |
---|
217 | * character following the parsed numeric string is written to |
---|
218 | * *endPtrPtr. |
---|
219 | * |
---|
220 | * In some cases where the string being scanned is the string rep of |
---|
221 | * objPtr, this routine can leave objPtr in an inconsistent state where |
---|
222 | * its string rep and its internal rep do not agree. In these cases the |
---|
223 | * internal rep will be in agreement with only some substring of the |
---|
224 | * string rep. This might happen if the caller passes in a non-NULL bytes |
---|
225 | * value that points somewhere into the string rep. It might happen if |
---|
226 | * the caller passes in a numBytes value that limits the scan to only a |
---|
227 | * prefix of the string rep. Or it might happen if a non-NULL value of |
---|
228 | * endPtrPtr permits a TCL_OK return from only a partial string match. It |
---|
229 | * is the responsibility of the caller to detect and correct such |
---|
230 | * inconsistencies when they can and do arise. |
---|
231 | * |
---|
232 | * Results: |
---|
233 | * Returns a standard Tcl result. |
---|
234 | * |
---|
235 | * Side effects: |
---|
236 | * The string representaton of objPtr may be generated. |
---|
237 | * |
---|
238 | * The internal representation and Tcl_ObjType of objPtr may be changed. |
---|
239 | * This may involve allocation and/or freeing of memory. |
---|
240 | * |
---|
241 | *---------------------------------------------------------------------- |
---|
242 | */ |
---|
243 | |
---|
244 | int |
---|
245 | TclParseNumber( |
---|
246 | Tcl_Interp *interp, /* Used for error reporting. May be NULL. */ |
---|
247 | Tcl_Obj *objPtr, /* Object to receive the internal rep. */ |
---|
248 | const char *expected, /* Description of the type of number the |
---|
249 | * caller expects to be able to parse |
---|
250 | * ("integer", "boolean value", etc.). */ |
---|
251 | const char *bytes, /* Pointer to the start of the string to |
---|
252 | * scan. */ |
---|
253 | int numBytes, /* Maximum number of bytes to scan, see |
---|
254 | * above. */ |
---|
255 | const char **endPtrPtr, /* Place to store pointer to the character |
---|
256 | * that terminated the scan. */ |
---|
257 | int flags) /* Flags governing the parse. */ |
---|
258 | { |
---|
259 | enum State { |
---|
260 | INITIAL, SIGNUM, ZERO, ZERO_X, |
---|
261 | ZERO_O, ZERO_B, BINARY, |
---|
262 | HEXADECIMAL, OCTAL, BAD_OCTAL, DECIMAL, |
---|
263 | LEADING_RADIX_POINT, FRACTION, |
---|
264 | EXPONENT_START, EXPONENT_SIGNUM, EXPONENT, |
---|
265 | sI, sIN, sINF, sINFI, sINFIN, sINFINI, sINFINIT, sINFINITY |
---|
266 | #ifdef IEEE_FLOATING_POINT |
---|
267 | , sN, sNA, sNAN, sNANPAREN, sNANHEX, sNANFINISH |
---|
268 | #endif |
---|
269 | } state = INITIAL; |
---|
270 | enum State acceptState = INITIAL; |
---|
271 | |
---|
272 | int signum = 0; /* Sign of the number being parsed */ |
---|
273 | Tcl_WideUInt significandWide = 0; |
---|
274 | /* Significand of the number being parsed (if |
---|
275 | * no overflow) */ |
---|
276 | mp_int significandBig; /* Significand of the number being parsed (if |
---|
277 | * it overflows significandWide) */ |
---|
278 | int significandOverflow = 0;/* Flag==1 iff significandBig is used */ |
---|
279 | Tcl_WideUInt octalSignificandWide = 0; |
---|
280 | /* Significand of an octal number; needed |
---|
281 | * because we don't know whether a number with |
---|
282 | * a leading zero is octal or decimal until |
---|
283 | * we've scanned forward to a '.' or 'e' */ |
---|
284 | mp_int octalSignificandBig; /* Significand of octal number once |
---|
285 | * octalSignificandWide overflows */ |
---|
286 | int octalSignificandOverflow = 0; |
---|
287 | /* Flag==1 if octalSignificandBig is used */ |
---|
288 | int numSigDigs = 0; /* Number of significant digits in the decimal |
---|
289 | * significand */ |
---|
290 | int numTrailZeros = 0; /* Number of trailing zeroes at the current |
---|
291 | * point in the parse. */ |
---|
292 | int numDigitsAfterDp = 0; /* Number of digits scanned after the decimal |
---|
293 | * point */ |
---|
294 | int exponentSignum = 0; /* Signum of the exponent of a floating point |
---|
295 | * number */ |
---|
296 | long exponent = 0; /* Exponent of a floating point number */ |
---|
297 | const char *p; /* Pointer to next character to scan */ |
---|
298 | size_t len; /* Number of characters remaining after p */ |
---|
299 | const char *acceptPoint; /* Pointer to position after last character in |
---|
300 | * an acceptable number */ |
---|
301 | size_t acceptLen; /* Number of characters following that |
---|
302 | * point. */ |
---|
303 | int status = TCL_OK; /* Status to return to caller */ |
---|
304 | char d = 0; /* Last hexadecimal digit scanned; initialized |
---|
305 | * to avoid a compiler warning. */ |
---|
306 | int shift = 0; /* Amount to shift when accumulating binary */ |
---|
307 | int explicitOctal = 0; |
---|
308 | |
---|
309 | #define ALL_BITS (~(Tcl_WideUInt)0) |
---|
310 | #define MOST_BITS (ALL_BITS >> 1) |
---|
311 | |
---|
312 | /* |
---|
313 | * Initialize bytes to start of the object's string rep if the caller |
---|
314 | * didn't pass anything else. |
---|
315 | */ |
---|
316 | |
---|
317 | if (bytes == NULL) { |
---|
318 | bytes = TclGetString(objPtr); |
---|
319 | } |
---|
320 | |
---|
321 | p = bytes; |
---|
322 | len = numBytes; |
---|
323 | acceptPoint = p; |
---|
324 | acceptLen = len; |
---|
325 | while (1) { |
---|
326 | char c = len ? *p : '\0'; |
---|
327 | switch (state) { |
---|
328 | |
---|
329 | case INITIAL: |
---|
330 | /* |
---|
331 | * Initial state. Acceptable characters are +, -, digits, period, |
---|
332 | * I, N, and whitespace. |
---|
333 | */ |
---|
334 | |
---|
335 | if (isspace(UCHAR(c))) { |
---|
336 | if (flags & TCL_PARSE_NO_WHITESPACE) { |
---|
337 | goto endgame; |
---|
338 | } |
---|
339 | break; |
---|
340 | } else if (c == '+') { |
---|
341 | state = SIGNUM; |
---|
342 | break; |
---|
343 | } else if (c == '-') { |
---|
344 | signum = 1; |
---|
345 | state = SIGNUM; |
---|
346 | break; |
---|
347 | } |
---|
348 | /* FALLTHROUGH */ |
---|
349 | |
---|
350 | case SIGNUM: |
---|
351 | /* |
---|
352 | * Scanned a leading + or -. Acceptable characters are digits, |
---|
353 | * period, I, and N. |
---|
354 | */ |
---|
355 | |
---|
356 | if (c == '0') { |
---|
357 | if (flags & TCL_PARSE_DECIMAL_ONLY) { |
---|
358 | state = DECIMAL; |
---|
359 | } else { |
---|
360 | state = ZERO; |
---|
361 | } |
---|
362 | break; |
---|
363 | } else if (flags & TCL_PARSE_HEXADECIMAL_ONLY) { |
---|
364 | goto zerox; |
---|
365 | } else if (flags & TCL_PARSE_OCTAL_ONLY) { |
---|
366 | goto zeroo; |
---|
367 | } else if (isdigit(UCHAR(c))) { |
---|
368 | significandWide = c - '0'; |
---|
369 | numSigDigs = 1; |
---|
370 | state = DECIMAL; |
---|
371 | break; |
---|
372 | } else if (flags & TCL_PARSE_INTEGER_ONLY) { |
---|
373 | goto endgame; |
---|
374 | } else if (c == '.') { |
---|
375 | state = LEADING_RADIX_POINT; |
---|
376 | break; |
---|
377 | } else if (c == 'I' || c == 'i') { |
---|
378 | state = sI; |
---|
379 | break; |
---|
380 | #ifdef IEEE_FLOATING_POINT |
---|
381 | } else if (c == 'N' || c == 'n') { |
---|
382 | state = sN; |
---|
383 | break; |
---|
384 | #endif |
---|
385 | } |
---|
386 | goto endgame; |
---|
387 | |
---|
388 | case ZERO: |
---|
389 | /* |
---|
390 | * Scanned a leading zero (perhaps with a + or -). Acceptable |
---|
391 | * inputs are digits, period, X, and E. If 8 or 9 is encountered, |
---|
392 | * the number can't be octal. This state and the OCTAL state |
---|
393 | * differ only in whether they recognize 'X'. |
---|
394 | */ |
---|
395 | |
---|
396 | acceptState = state; |
---|
397 | acceptPoint = p; |
---|
398 | acceptLen = len; |
---|
399 | if (c == 'x' || c == 'X') { |
---|
400 | state = ZERO_X; |
---|
401 | break; |
---|
402 | } |
---|
403 | if (flags & TCL_PARSE_HEXADECIMAL_ONLY) { |
---|
404 | goto zerox; |
---|
405 | } |
---|
406 | if (flags & TCL_PARSE_SCAN_PREFIXES) { |
---|
407 | goto zeroo; |
---|
408 | } |
---|
409 | if (c == 'b' || c == 'B') { |
---|
410 | state = ZERO_B; |
---|
411 | break; |
---|
412 | } |
---|
413 | if (c == 'o' || c == 'O') { |
---|
414 | explicitOctal = 1; |
---|
415 | state = ZERO_O; |
---|
416 | break; |
---|
417 | } |
---|
418 | #ifdef KILL_OCTAL |
---|
419 | goto decimal; |
---|
420 | #endif |
---|
421 | /* FALLTHROUGH */ |
---|
422 | |
---|
423 | case OCTAL: |
---|
424 | /* |
---|
425 | * Scanned an optional + or -, followed by a string of octal |
---|
426 | * digits. Acceptable inputs are more digits, period, or E. If 8 |
---|
427 | * or 9 is encountered, commit to floating point. |
---|
428 | */ |
---|
429 | |
---|
430 | acceptState = state; |
---|
431 | acceptPoint = p; |
---|
432 | acceptLen = len; |
---|
433 | /* FALLTHROUGH */ |
---|
434 | case ZERO_O: |
---|
435 | zeroo: |
---|
436 | if (c == '0') { |
---|
437 | ++numTrailZeros; |
---|
438 | state = OCTAL; |
---|
439 | break; |
---|
440 | } else if (c >= '1' && c <= '7') { |
---|
441 | if (objPtr != NULL) { |
---|
442 | shift = 3 * (numTrailZeros + 1); |
---|
443 | significandOverflow = AccumulateDecimalDigit( |
---|
444 | (unsigned)(c-'0'), numTrailZeros, |
---|
445 | &significandWide, &significandBig, |
---|
446 | significandOverflow); |
---|
447 | |
---|
448 | if (!octalSignificandOverflow) { |
---|
449 | /* |
---|
450 | * Shifting by more bits than are in the value being |
---|
451 | * shifted is at least de facto nonportable. Check for |
---|
452 | * too large shifts first. |
---|
453 | */ |
---|
454 | |
---|
455 | if ((octalSignificandWide != 0) |
---|
456 | && (((size_t)shift >= |
---|
457 | CHAR_BIT*sizeof(Tcl_WideUInt)) |
---|
458 | || (octalSignificandWide > |
---|
459 | (~(Tcl_WideUInt)0 >> shift)))) { |
---|
460 | octalSignificandOverflow = 1; |
---|
461 | TclBNInitBignumFromWideUInt(&octalSignificandBig, |
---|
462 | octalSignificandWide); |
---|
463 | } |
---|
464 | } |
---|
465 | if (!octalSignificandOverflow) { |
---|
466 | octalSignificandWide = |
---|
467 | (octalSignificandWide << shift) + (c - '0'); |
---|
468 | } else { |
---|
469 | mp_mul_2d(&octalSignificandBig, shift, |
---|
470 | &octalSignificandBig); |
---|
471 | mp_add_d(&octalSignificandBig, (mp_digit)(c - '0'), |
---|
472 | &octalSignificandBig); |
---|
473 | } |
---|
474 | } |
---|
475 | if (numSigDigs != 0) { |
---|
476 | numSigDigs += numTrailZeros+1; |
---|
477 | } else { |
---|
478 | numSigDigs = 1; |
---|
479 | } |
---|
480 | numTrailZeros = 0; |
---|
481 | state = OCTAL; |
---|
482 | break; |
---|
483 | } |
---|
484 | /* FALLTHROUGH */ |
---|
485 | |
---|
486 | case BAD_OCTAL: |
---|
487 | if (explicitOctal) { |
---|
488 | /* |
---|
489 | * No forgiveness for bad digits in explicitly octal numbers. |
---|
490 | */ |
---|
491 | |
---|
492 | goto endgame; |
---|
493 | } |
---|
494 | if (flags & TCL_PARSE_INTEGER_ONLY) { |
---|
495 | /* |
---|
496 | * No seeking floating point when parsing only integer. |
---|
497 | */ |
---|
498 | |
---|
499 | goto endgame; |
---|
500 | } |
---|
501 | #ifndef KILL_OCTAL |
---|
502 | |
---|
503 | /* |
---|
504 | * Scanned a number with a leading zero that contains an 8, 9, |
---|
505 | * radix point or E. This is an invalid octal number, but might |
---|
506 | * still be floating point. |
---|
507 | */ |
---|
508 | |
---|
509 | if (c == '0') { |
---|
510 | ++numTrailZeros; |
---|
511 | state = BAD_OCTAL; |
---|
512 | break; |
---|
513 | } else if (isdigit(UCHAR(c))) { |
---|
514 | if (objPtr != NULL) { |
---|
515 | significandOverflow = AccumulateDecimalDigit( |
---|
516 | (unsigned)(c-'0'), numTrailZeros, |
---|
517 | &significandWide, &significandBig, |
---|
518 | significandOverflow); |
---|
519 | } |
---|
520 | if (numSigDigs != 0) { |
---|
521 | numSigDigs += (numTrailZeros + 1); |
---|
522 | } else { |
---|
523 | numSigDigs = 1; |
---|
524 | } |
---|
525 | numTrailZeros = 0; |
---|
526 | state = BAD_OCTAL; |
---|
527 | break; |
---|
528 | } else if (c == '.') { |
---|
529 | state = FRACTION; |
---|
530 | break; |
---|
531 | } else if (c == 'E' || c == 'e') { |
---|
532 | state = EXPONENT_START; |
---|
533 | break; |
---|
534 | } |
---|
535 | #endif |
---|
536 | goto endgame; |
---|
537 | |
---|
538 | /* |
---|
539 | * Scanned 0x. If state is HEXADECIMAL, scanned at least one |
---|
540 | * character following the 0x. The only acceptable inputs are |
---|
541 | * hexadecimal digits. |
---|
542 | */ |
---|
543 | |
---|
544 | case HEXADECIMAL: |
---|
545 | acceptState = state; |
---|
546 | acceptPoint = p; |
---|
547 | acceptLen = len; |
---|
548 | /* FALLTHROUGH */ |
---|
549 | |
---|
550 | case ZERO_X: |
---|
551 | zerox: |
---|
552 | if (c == '0') { |
---|
553 | ++numTrailZeros; |
---|
554 | state = HEXADECIMAL; |
---|
555 | break; |
---|
556 | } else if (isdigit(UCHAR(c))) { |
---|
557 | d = (c-'0'); |
---|
558 | } else if (c >= 'A' && c <= 'F') { |
---|
559 | d = (c-'A'+10); |
---|
560 | } else if (c >= 'a' && c <= 'f') { |
---|
561 | d = (c-'a'+10); |
---|
562 | } else { |
---|
563 | goto endgame; |
---|
564 | } |
---|
565 | if (objPtr != NULL) { |
---|
566 | shift = 4 * (numTrailZeros + 1); |
---|
567 | if (!significandOverflow) { |
---|
568 | /* |
---|
569 | * Shifting by more bits than are in the value being |
---|
570 | * shifted is at least de facto nonportable. Check for too |
---|
571 | * large shifts first. |
---|
572 | */ |
---|
573 | |
---|
574 | if (significandWide != 0 && |
---|
575 | ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) || |
---|
576 | significandWide > (~(Tcl_WideUInt)0 >> shift))) { |
---|
577 | significandOverflow = 1; |
---|
578 | TclBNInitBignumFromWideUInt(&significandBig, |
---|
579 | significandWide); |
---|
580 | } |
---|
581 | } |
---|
582 | if (!significandOverflow) { |
---|
583 | significandWide = (significandWide << shift) + d; |
---|
584 | } else { |
---|
585 | mp_mul_2d(&significandBig, shift, &significandBig); |
---|
586 | mp_add_d(&significandBig, (mp_digit) d, &significandBig); |
---|
587 | } |
---|
588 | } |
---|
589 | numTrailZeros = 0; |
---|
590 | state = HEXADECIMAL; |
---|
591 | break; |
---|
592 | |
---|
593 | case BINARY: |
---|
594 | acceptState = state; |
---|
595 | acceptPoint = p; |
---|
596 | acceptLen = len; |
---|
597 | case ZERO_B: |
---|
598 | if (c == '0') { |
---|
599 | ++numTrailZeros; |
---|
600 | state = BINARY; |
---|
601 | break; |
---|
602 | } else if (c != '1') { |
---|
603 | goto endgame; |
---|
604 | } |
---|
605 | if (objPtr != NULL) { |
---|
606 | shift = numTrailZeros + 1; |
---|
607 | if (!significandOverflow) { |
---|
608 | /* |
---|
609 | * Shifting by more bits than are in the value being |
---|
610 | * shifted is at least de facto nonportable. Check for too |
---|
611 | * large shifts first. |
---|
612 | */ |
---|
613 | |
---|
614 | if (significandWide != 0 && |
---|
615 | ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) || |
---|
616 | significandWide > (~(Tcl_WideUInt)0 >> shift))) { |
---|
617 | significandOverflow = 1; |
---|
618 | TclBNInitBignumFromWideUInt(&significandBig, |
---|
619 | significandWide); |
---|
620 | } |
---|
621 | } |
---|
622 | if (!significandOverflow) { |
---|
623 | significandWide = (significandWide << shift) + 1; |
---|
624 | } else { |
---|
625 | mp_mul_2d(&significandBig, shift, &significandBig); |
---|
626 | mp_add_d(&significandBig, (mp_digit) 1, &significandBig); |
---|
627 | } |
---|
628 | } |
---|
629 | numTrailZeros = 0; |
---|
630 | state = BINARY; |
---|
631 | break; |
---|
632 | |
---|
633 | case DECIMAL: |
---|
634 | /* |
---|
635 | * Scanned an optional + or - followed by a string of decimal |
---|
636 | * digits. |
---|
637 | */ |
---|
638 | |
---|
639 | #ifdef KILL_OCTAL |
---|
640 | decimal: |
---|
641 | #endif |
---|
642 | acceptState = state; |
---|
643 | acceptPoint = p; |
---|
644 | acceptLen = len; |
---|
645 | if (c == '0') { |
---|
646 | ++numTrailZeros; |
---|
647 | state = DECIMAL; |
---|
648 | break; |
---|
649 | } else if (isdigit(UCHAR(c))) { |
---|
650 | if (objPtr != NULL) { |
---|
651 | significandOverflow = AccumulateDecimalDigit( |
---|
652 | (unsigned)(c - '0'), numTrailZeros, |
---|
653 | &significandWide, &significandBig, |
---|
654 | significandOverflow); |
---|
655 | } |
---|
656 | numSigDigs += numTrailZeros+1; |
---|
657 | numTrailZeros = 0; |
---|
658 | state = DECIMAL; |
---|
659 | break; |
---|
660 | } else if (flags & TCL_PARSE_INTEGER_ONLY) { |
---|
661 | goto endgame; |
---|
662 | } else if (c == '.') { |
---|
663 | state = FRACTION; |
---|
664 | break; |
---|
665 | } else if (c == 'E' || c == 'e') { |
---|
666 | state = EXPONENT_START; |
---|
667 | break; |
---|
668 | } |
---|
669 | goto endgame; |
---|
670 | |
---|
671 | /* |
---|
672 | * Found a decimal point. If no digits have yet been scanned, E is |
---|
673 | * not allowed; otherwise, it introduces the exponent. If at least |
---|
674 | * one digit has been found, we have a possible complete number. |
---|
675 | */ |
---|
676 | |
---|
677 | case FRACTION: |
---|
678 | acceptState = state; |
---|
679 | acceptPoint = p; |
---|
680 | acceptLen = len; |
---|
681 | if (c == 'E' || c=='e') { |
---|
682 | state = EXPONENT_START; |
---|
683 | break; |
---|
684 | } |
---|
685 | /* FALLTHROUGH */ |
---|
686 | |
---|
687 | case LEADING_RADIX_POINT: |
---|
688 | if (c == '0') { |
---|
689 | ++numDigitsAfterDp; |
---|
690 | ++numTrailZeros; |
---|
691 | state = FRACTION; |
---|
692 | break; |
---|
693 | } else if (isdigit(UCHAR(c))) { |
---|
694 | ++numDigitsAfterDp; |
---|
695 | if (objPtr != NULL) { |
---|
696 | significandOverflow = AccumulateDecimalDigit( |
---|
697 | (unsigned)(c-'0'), numTrailZeros, |
---|
698 | &significandWide, &significandBig, |
---|
699 | significandOverflow); |
---|
700 | } |
---|
701 | if (numSigDigs != 0) { |
---|
702 | numSigDigs += numTrailZeros+1; |
---|
703 | } else { |
---|
704 | numSigDigs = 1; |
---|
705 | } |
---|
706 | numTrailZeros = 0; |
---|
707 | state = FRACTION; |
---|
708 | break; |
---|
709 | } |
---|
710 | goto endgame; |
---|
711 | |
---|
712 | case EXPONENT_START: |
---|
713 | /* |
---|
714 | * Scanned the E at the start of an exponent. Make sure a legal |
---|
715 | * character follows before using the C library strtol routine, |
---|
716 | * which allows whitespace. |
---|
717 | */ |
---|
718 | |
---|
719 | if (c == '+') { |
---|
720 | state = EXPONENT_SIGNUM; |
---|
721 | break; |
---|
722 | } else if (c == '-') { |
---|
723 | exponentSignum = 1; |
---|
724 | state = EXPONENT_SIGNUM; |
---|
725 | break; |
---|
726 | } |
---|
727 | /* FALLTHROUGH */ |
---|
728 | |
---|
729 | case EXPONENT_SIGNUM: |
---|
730 | /* |
---|
731 | * Found the E at the start of the exponent, followed by a sign |
---|
732 | * character. |
---|
733 | */ |
---|
734 | |
---|
735 | if (isdigit(UCHAR(c))) { |
---|
736 | exponent = c - '0'; |
---|
737 | state = EXPONENT; |
---|
738 | break; |
---|
739 | } |
---|
740 | goto endgame; |
---|
741 | |
---|
742 | case EXPONENT: |
---|
743 | /* |
---|
744 | * Found an exponent with at least one digit. Accumulate it, |
---|
745 | * making sure to hard-pin it to LONG_MAX on overflow. |
---|
746 | */ |
---|
747 | |
---|
748 | acceptState = state; |
---|
749 | acceptPoint = p; |
---|
750 | acceptLen = len; |
---|
751 | if (isdigit(UCHAR(c))) { |
---|
752 | if (exponent < (LONG_MAX - 9) / 10) { |
---|
753 | exponent = 10 * exponent + (c - '0'); |
---|
754 | } else { |
---|
755 | exponent = LONG_MAX; |
---|
756 | } |
---|
757 | state = EXPONENT; |
---|
758 | break; |
---|
759 | } |
---|
760 | goto endgame; |
---|
761 | |
---|
762 | /* |
---|
763 | * Parse out INFINITY by simply spelling it out. INF is accepted |
---|
764 | * as an abbreviation; other prefices are not. |
---|
765 | */ |
---|
766 | |
---|
767 | case sI: |
---|
768 | if (c == 'n' || c == 'N') { |
---|
769 | state = sIN; |
---|
770 | break; |
---|
771 | } |
---|
772 | goto endgame; |
---|
773 | case sIN: |
---|
774 | if (c == 'f' || c == 'F') { |
---|
775 | state = sINF; |
---|
776 | break; |
---|
777 | } |
---|
778 | goto endgame; |
---|
779 | case sINF: |
---|
780 | acceptState = state; |
---|
781 | acceptPoint = p; |
---|
782 | acceptLen = len; |
---|
783 | if (c == 'i' || c == 'I') { |
---|
784 | state = sINFI; |
---|
785 | break; |
---|
786 | } |
---|
787 | goto endgame; |
---|
788 | case sINFI: |
---|
789 | if (c == 'n' || c == 'N') { |
---|
790 | state = sINFIN; |
---|
791 | break; |
---|
792 | } |
---|
793 | goto endgame; |
---|
794 | case sINFIN: |
---|
795 | if (c == 'i' || c == 'I') { |
---|
796 | state = sINFINI; |
---|
797 | break; |
---|
798 | } |
---|
799 | goto endgame; |
---|
800 | case sINFINI: |
---|
801 | if (c == 't' || c == 'T') { |
---|
802 | state = sINFINIT; |
---|
803 | break; |
---|
804 | } |
---|
805 | goto endgame; |
---|
806 | case sINFINIT: |
---|
807 | if (c == 'y' || c == 'Y') { |
---|
808 | state = sINFINITY; |
---|
809 | break; |
---|
810 | } |
---|
811 | goto endgame; |
---|
812 | |
---|
813 | /* |
---|
814 | * Parse NaN's. |
---|
815 | */ |
---|
816 | #ifdef IEEE_FLOATING_POINT |
---|
817 | case sN: |
---|
818 | if (c == 'a' || c == 'A') { |
---|
819 | state = sNA; |
---|
820 | break; |
---|
821 | } |
---|
822 | goto endgame; |
---|
823 | case sNA: |
---|
824 | if (c == 'n' || c == 'N') { |
---|
825 | state = sNAN; |
---|
826 | break; |
---|
827 | } |
---|
828 | goto endgame; |
---|
829 | case sNAN: |
---|
830 | acceptState = state; |
---|
831 | acceptPoint = p; |
---|
832 | acceptLen = len; |
---|
833 | if (c == '(') { |
---|
834 | state = sNANPAREN; |
---|
835 | break; |
---|
836 | } |
---|
837 | goto endgame; |
---|
838 | |
---|
839 | /* |
---|
840 | * Parse NaN(hexdigits) |
---|
841 | */ |
---|
842 | case sNANHEX: |
---|
843 | if (c == ')') { |
---|
844 | state = sNANFINISH; |
---|
845 | break; |
---|
846 | } |
---|
847 | /* FALLTHROUGH */ |
---|
848 | case sNANPAREN: |
---|
849 | if (isspace(UCHAR(c))) { |
---|
850 | break; |
---|
851 | } |
---|
852 | if (numSigDigs < 13) { |
---|
853 | if (c >= '0' && c <= '9') { |
---|
854 | d = c - '0'; |
---|
855 | } else if (c >= 'a' && c <= 'f') { |
---|
856 | d = 10 + c - 'a'; |
---|
857 | } else if (c >= 'A' && c <= 'F') { |
---|
858 | d = 10 + c - 'A'; |
---|
859 | } |
---|
860 | significandWide = (significandWide << 4) + d; |
---|
861 | state = sNANHEX; |
---|
862 | break; |
---|
863 | } |
---|
864 | goto endgame; |
---|
865 | case sNANFINISH: |
---|
866 | #endif |
---|
867 | |
---|
868 | case sINFINITY: |
---|
869 | acceptState = state; |
---|
870 | acceptPoint = p; |
---|
871 | acceptLen = len; |
---|
872 | goto endgame; |
---|
873 | } |
---|
874 | ++p; |
---|
875 | --len; |
---|
876 | } |
---|
877 | |
---|
878 | endgame: |
---|
879 | if (acceptState == INITIAL) { |
---|
880 | /* |
---|
881 | * No numeric string at all found. |
---|
882 | */ |
---|
883 | |
---|
884 | status = TCL_ERROR; |
---|
885 | if (endPtrPtr != NULL) { |
---|
886 | *endPtrPtr = p; |
---|
887 | } |
---|
888 | } else { |
---|
889 | /* |
---|
890 | * Back up to the last accepting state in the lexer. |
---|
891 | */ |
---|
892 | |
---|
893 | p = acceptPoint; |
---|
894 | len = acceptLen; |
---|
895 | if (!(flags & TCL_PARSE_NO_WHITESPACE)) { |
---|
896 | /* |
---|
897 | * Accept trailing whitespace. |
---|
898 | */ |
---|
899 | |
---|
900 | while (len != 0 && isspace(UCHAR(*p))) { |
---|
901 | ++p; |
---|
902 | --len; |
---|
903 | } |
---|
904 | } |
---|
905 | if (endPtrPtr == NULL) { |
---|
906 | if ((len != 0) && ((numBytes > 0) || (*p != '\0'))) { |
---|
907 | status = TCL_ERROR; |
---|
908 | } |
---|
909 | } else { |
---|
910 | *endPtrPtr = p; |
---|
911 | } |
---|
912 | } |
---|
913 | |
---|
914 | /* |
---|
915 | * Generate and store the appropriate internal rep. |
---|
916 | */ |
---|
917 | |
---|
918 | if (status == TCL_OK && objPtr != NULL) { |
---|
919 | TclFreeIntRep(objPtr); |
---|
920 | switch (acceptState) { |
---|
921 | case SIGNUM: |
---|
922 | case BAD_OCTAL: |
---|
923 | case ZERO_X: |
---|
924 | case ZERO_O: |
---|
925 | case ZERO_B: |
---|
926 | case LEADING_RADIX_POINT: |
---|
927 | case EXPONENT_START: |
---|
928 | case EXPONENT_SIGNUM: |
---|
929 | case sI: |
---|
930 | case sIN: |
---|
931 | case sINFI: |
---|
932 | case sINFIN: |
---|
933 | case sINFINI: |
---|
934 | case sINFINIT: |
---|
935 | case sN: |
---|
936 | case sNA: |
---|
937 | case sNANPAREN: |
---|
938 | case sNANHEX: |
---|
939 | Tcl_Panic("TclParseNumber: bad acceptState %d parsing '%s'", |
---|
940 | acceptState, bytes); |
---|
941 | |
---|
942 | case BINARY: |
---|
943 | shift = numTrailZeros; |
---|
944 | if (!significandOverflow && significandWide != 0 && |
---|
945 | ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) || |
---|
946 | significandWide > (MOST_BITS + signum) >> shift)) { |
---|
947 | significandOverflow = 1; |
---|
948 | TclBNInitBignumFromWideUInt(&significandBig, significandWide); |
---|
949 | } |
---|
950 | if (shift) { |
---|
951 | if (!significandOverflow) { |
---|
952 | significandWide <<= shift; |
---|
953 | } else { |
---|
954 | mp_mul_2d(&significandBig, shift, &significandBig); |
---|
955 | } |
---|
956 | } |
---|
957 | goto returnInteger; |
---|
958 | |
---|
959 | case HEXADECIMAL: |
---|
960 | /* |
---|
961 | * Returning a hex integer. Final scaling step. |
---|
962 | */ |
---|
963 | |
---|
964 | shift = 4 * numTrailZeros; |
---|
965 | if (!significandOverflow && significandWide !=0 && |
---|
966 | ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) || |
---|
967 | significandWide > (MOST_BITS + signum) >> shift)) { |
---|
968 | significandOverflow = 1; |
---|
969 | TclBNInitBignumFromWideUInt(&significandBig, significandWide); |
---|
970 | } |
---|
971 | if (shift) { |
---|
972 | if (!significandOverflow) { |
---|
973 | significandWide <<= shift; |
---|
974 | } else { |
---|
975 | mp_mul_2d(&significandBig, shift, &significandBig); |
---|
976 | } |
---|
977 | } |
---|
978 | goto returnInteger; |
---|
979 | |
---|
980 | case OCTAL: |
---|
981 | /* |
---|
982 | * Returning an octal integer. Final scaling step |
---|
983 | */ |
---|
984 | |
---|
985 | shift = 3 * numTrailZeros; |
---|
986 | if (!octalSignificandOverflow && octalSignificandWide != 0 && |
---|
987 | ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) || |
---|
988 | octalSignificandWide > (MOST_BITS + signum) >> shift)) { |
---|
989 | octalSignificandOverflow = 1; |
---|
990 | TclBNInitBignumFromWideUInt(&octalSignificandBig, |
---|
991 | octalSignificandWide); |
---|
992 | } |
---|
993 | if (shift) { |
---|
994 | if (!octalSignificandOverflow) { |
---|
995 | octalSignificandWide <<= shift; |
---|
996 | } else { |
---|
997 | mp_mul_2d(&octalSignificandBig, shift, |
---|
998 | &octalSignificandBig); |
---|
999 | } |
---|
1000 | } |
---|
1001 | if (!octalSignificandOverflow) { |
---|
1002 | if (octalSignificandWide > |
---|
1003 | (Tcl_WideUInt)(((~(unsigned long)0) >> 1) + signum)) { |
---|
1004 | #ifndef NO_WIDE_TYPE |
---|
1005 | if (octalSignificandWide <= (MOST_BITS + signum)) { |
---|
1006 | objPtr->typePtr = &tclWideIntType; |
---|
1007 | if (signum) { |
---|
1008 | objPtr->internalRep.wideValue = |
---|
1009 | - (Tcl_WideInt) octalSignificandWide; |
---|
1010 | } else { |
---|
1011 | objPtr->internalRep.wideValue = |
---|
1012 | (Tcl_WideInt) octalSignificandWide; |
---|
1013 | } |
---|
1014 | break; |
---|
1015 | } |
---|
1016 | #endif |
---|
1017 | TclBNInitBignumFromWideUInt(&octalSignificandBig, |
---|
1018 | octalSignificandWide); |
---|
1019 | octalSignificandOverflow = 1; |
---|
1020 | } else { |
---|
1021 | objPtr->typePtr = &tclIntType; |
---|
1022 | if (signum) { |
---|
1023 | objPtr->internalRep.longValue = |
---|
1024 | - (long) octalSignificandWide; |
---|
1025 | } else { |
---|
1026 | objPtr->internalRep.longValue = |
---|
1027 | (long) octalSignificandWide; |
---|
1028 | } |
---|
1029 | } |
---|
1030 | } |
---|
1031 | if (octalSignificandOverflow) { |
---|
1032 | if (signum) { |
---|
1033 | mp_neg(&octalSignificandBig, &octalSignificandBig); |
---|
1034 | } |
---|
1035 | TclSetBignumIntRep(objPtr, &octalSignificandBig); |
---|
1036 | } |
---|
1037 | break; |
---|
1038 | |
---|
1039 | case ZERO: |
---|
1040 | case DECIMAL: |
---|
1041 | significandOverflow = AccumulateDecimalDigit(0, numTrailZeros-1, |
---|
1042 | &significandWide, &significandBig, significandOverflow); |
---|
1043 | if (!significandOverflow && (significandWide > MOST_BITS+signum)) { |
---|
1044 | significandOverflow = 1; |
---|
1045 | TclBNInitBignumFromWideUInt(&significandBig, significandWide); |
---|
1046 | } |
---|
1047 | returnInteger: |
---|
1048 | if (!significandOverflow) { |
---|
1049 | if (significandWide > |
---|
1050 | (Tcl_WideUInt)(((~(unsigned long)0) >> 1) + signum)) { |
---|
1051 | #ifndef NO_WIDE_TYPE |
---|
1052 | if (significandWide <= MOST_BITS+signum) { |
---|
1053 | objPtr->typePtr = &tclWideIntType; |
---|
1054 | if (signum) { |
---|
1055 | objPtr->internalRep.wideValue = |
---|
1056 | - (Tcl_WideInt) significandWide; |
---|
1057 | } else { |
---|
1058 | objPtr->internalRep.wideValue = |
---|
1059 | (Tcl_WideInt) significandWide; |
---|
1060 | } |
---|
1061 | break; |
---|
1062 | } |
---|
1063 | #endif |
---|
1064 | TclBNInitBignumFromWideUInt(&significandBig, |
---|
1065 | significandWide); |
---|
1066 | significandOverflow = 1; |
---|
1067 | } else { |
---|
1068 | objPtr->typePtr = &tclIntType; |
---|
1069 | if (signum) { |
---|
1070 | objPtr->internalRep.longValue = |
---|
1071 | - (long) significandWide; |
---|
1072 | } else { |
---|
1073 | objPtr->internalRep.longValue = |
---|
1074 | (long) significandWide; |
---|
1075 | } |
---|
1076 | } |
---|
1077 | } |
---|
1078 | if (significandOverflow) { |
---|
1079 | if (signum) { |
---|
1080 | mp_neg(&significandBig, &significandBig); |
---|
1081 | } |
---|
1082 | TclSetBignumIntRep(objPtr, &significandBig); |
---|
1083 | } |
---|
1084 | break; |
---|
1085 | |
---|
1086 | case FRACTION: |
---|
1087 | case EXPONENT: |
---|
1088 | |
---|
1089 | /* |
---|
1090 | * Here, we're parsing a floating-point number. 'significandWide' |
---|
1091 | * or 'significandBig' contains the exact significand, according |
---|
1092 | * to whether 'significandOverflow' is set. The desired floating |
---|
1093 | * point value is significand * 10**k, where |
---|
1094 | * k = numTrailZeros+exponent-numDigitsAfterDp. |
---|
1095 | */ |
---|
1096 | |
---|
1097 | objPtr->typePtr = &tclDoubleType; |
---|
1098 | if (exponentSignum) { |
---|
1099 | exponent = - exponent; |
---|
1100 | } |
---|
1101 | if (!significandOverflow) { |
---|
1102 | objPtr->internalRep.doubleValue = MakeLowPrecisionDouble( |
---|
1103 | signum, significandWide, numSigDigs, |
---|
1104 | (numTrailZeros + exponent - numDigitsAfterDp)); |
---|
1105 | } else { |
---|
1106 | objPtr->internalRep.doubleValue = MakeHighPrecisionDouble( |
---|
1107 | signum, &significandBig, numSigDigs, |
---|
1108 | (numTrailZeros + exponent - numDigitsAfterDp)); |
---|
1109 | } |
---|
1110 | break; |
---|
1111 | |
---|
1112 | case sINF: |
---|
1113 | case sINFINITY: |
---|
1114 | if (signum) { |
---|
1115 | objPtr->internalRep.doubleValue = -HUGE_VAL; |
---|
1116 | } else { |
---|
1117 | objPtr->internalRep.doubleValue = HUGE_VAL; |
---|
1118 | } |
---|
1119 | objPtr->typePtr = &tclDoubleType; |
---|
1120 | break; |
---|
1121 | |
---|
1122 | case sNAN: |
---|
1123 | case sNANFINISH: |
---|
1124 | objPtr->internalRep.doubleValue = MakeNaN(signum, significandWide); |
---|
1125 | objPtr->typePtr = &tclDoubleType; |
---|
1126 | break; |
---|
1127 | |
---|
1128 | case INITIAL: |
---|
1129 | /* This case only to silence compiler warning */ |
---|
1130 | Tcl_Panic("TclParseNumber: state INITIAL can't happen here"); |
---|
1131 | } |
---|
1132 | } |
---|
1133 | |
---|
1134 | /* |
---|
1135 | * Format an error message when an invalid number is encountered. |
---|
1136 | */ |
---|
1137 | |
---|
1138 | if (status != TCL_OK) { |
---|
1139 | if (interp != NULL) { |
---|
1140 | Tcl_Obj *msg; |
---|
1141 | |
---|
1142 | TclNewLiteralStringObj(msg, "expected "); |
---|
1143 | Tcl_AppendToObj(msg, expected, -1); |
---|
1144 | Tcl_AppendToObj(msg, " but got \"", -1); |
---|
1145 | Tcl_AppendLimitedToObj(msg, bytes, numBytes, 50, ""); |
---|
1146 | Tcl_AppendToObj(msg, "\"", -1); |
---|
1147 | if (state == BAD_OCTAL) { |
---|
1148 | Tcl_AppendToObj(msg, " (looks like invalid octal number)", -1); |
---|
1149 | } |
---|
1150 | Tcl_SetObjResult(interp, msg); |
---|
1151 | } |
---|
1152 | } |
---|
1153 | |
---|
1154 | /* |
---|
1155 | * Free memory. |
---|
1156 | */ |
---|
1157 | |
---|
1158 | if (octalSignificandOverflow) { |
---|
1159 | mp_clear(&octalSignificandBig); |
---|
1160 | } |
---|
1161 | if (significandOverflow) { |
---|
1162 | mp_clear(&significandBig); |
---|
1163 | } |
---|
1164 | return status; |
---|
1165 | } |
---|
1166 | |
---|
1167 | /* |
---|
1168 | *---------------------------------------------------------------------- |
---|
1169 | * |
---|
1170 | * AccumulateDecimalDigit -- |
---|
1171 | * |
---|
1172 | * Consume a decimal digit in a number being scanned. |
---|
1173 | * |
---|
1174 | * Results: |
---|
1175 | * Returns 1 if the number has overflowed to a bignum, 0 if it still fits |
---|
1176 | * in a wide integer. |
---|
1177 | * |
---|
1178 | * Side effects: |
---|
1179 | * Updates either the wide or bignum representation. |
---|
1180 | * |
---|
1181 | *---------------------------------------------------------------------- |
---|
1182 | */ |
---|
1183 | |
---|
1184 | static int |
---|
1185 | AccumulateDecimalDigit( |
---|
1186 | unsigned digit, /* Digit being scanned. */ |
---|
1187 | int numZeros, /* Count of zero digits preceding the digit |
---|
1188 | * being scanned. */ |
---|
1189 | Tcl_WideUInt *wideRepPtr, /* Representation of the partial number as a |
---|
1190 | * wide integer. */ |
---|
1191 | mp_int *bignumRepPtr, /* Representation of the partial number as a |
---|
1192 | * bignum. */ |
---|
1193 | int bignumFlag) /* Flag == 1 if the number overflowed previous |
---|
1194 | * to this digit. */ |
---|
1195 | { |
---|
1196 | int i, n; |
---|
1197 | Tcl_WideUInt w; |
---|
1198 | |
---|
1199 | /* |
---|
1200 | * Try wide multiplication first |
---|
1201 | */ |
---|
1202 | |
---|
1203 | if (!bignumFlag) { |
---|
1204 | w = *wideRepPtr; |
---|
1205 | if (w == 0) { |
---|
1206 | /* |
---|
1207 | * There's no need to multiply if the multiplicand is zero. |
---|
1208 | */ |
---|
1209 | |
---|
1210 | *wideRepPtr = digit; |
---|
1211 | return 0; |
---|
1212 | } else if (numZeros >= maxpow10_wide |
---|
1213 | || w > ((~(Tcl_WideUInt)0)-digit)/pow10_wide[numZeros+1]) { |
---|
1214 | /* |
---|
1215 | * Wide multiplication will overflow. Expand the |
---|
1216 | * number to a bignum and fall through into the bignum case. |
---|
1217 | */ |
---|
1218 | |
---|
1219 | TclBNInitBignumFromWideUInt (bignumRepPtr, w); |
---|
1220 | } else { |
---|
1221 | /* |
---|
1222 | * Wide multiplication. |
---|
1223 | */ |
---|
1224 | *wideRepPtr = w * pow10_wide[numZeros+1] + digit; |
---|
1225 | return 0; |
---|
1226 | } |
---|
1227 | } |
---|
1228 | |
---|
1229 | /* |
---|
1230 | * Bignum multiplication. |
---|
1231 | */ |
---|
1232 | |
---|
1233 | if (numZeros < log10_DIGIT_MAX) { |
---|
1234 | /* |
---|
1235 | * Up to about 8 zeros - single digit multiplication. |
---|
1236 | */ |
---|
1237 | |
---|
1238 | mp_mul_d(bignumRepPtr, (mp_digit) pow10_wide[numZeros+1], |
---|
1239 | bignumRepPtr); |
---|
1240 | mp_add_d(bignumRepPtr, (mp_digit) digit, bignumRepPtr); |
---|
1241 | } else { |
---|
1242 | /* |
---|
1243 | * More than single digit multiplication. Multiply by the appropriate |
---|
1244 | * small powers of 5, and then shift. Large strings of zeroes are |
---|
1245 | * eaten 256 at a time; this is less efficient than it could be, but |
---|
1246 | * seems implausible. We presume that DIGIT_BIT is at least 27. The |
---|
1247 | * first multiplication, by up to 10**7, is done with a one-DIGIT |
---|
1248 | * multiply (this presumes that DIGIT_BIT >= 24). |
---|
1249 | */ |
---|
1250 | |
---|
1251 | n = numZeros + 1; |
---|
1252 | mp_mul_d(bignumRepPtr, (mp_digit) pow10_wide[n&0x7], bignumRepPtr); |
---|
1253 | for (i=3; i<=7; ++i) { |
---|
1254 | if (n & (1 << i)) { |
---|
1255 | mp_mul(bignumRepPtr, pow5+i, bignumRepPtr); |
---|
1256 | } |
---|
1257 | } |
---|
1258 | while (n >= 256) { |
---|
1259 | mp_mul(bignumRepPtr, pow5+8, bignumRepPtr); |
---|
1260 | n -= 256; |
---|
1261 | } |
---|
1262 | mp_mul_2d(bignumRepPtr, (int)(numZeros+1)&~0x7, bignumRepPtr); |
---|
1263 | mp_add_d(bignumRepPtr, (mp_digit) digit, bignumRepPtr); |
---|
1264 | } |
---|
1265 | |
---|
1266 | return 1; |
---|
1267 | } |
---|
1268 | |
---|
1269 | /* |
---|
1270 | *---------------------------------------------------------------------- |
---|
1271 | * |
---|
1272 | * MakeLowPrecisionDouble -- |
---|
1273 | * |
---|
1274 | * Makes the double precision number, signum*significand*10**exponent. |
---|
1275 | * |
---|
1276 | * Results: |
---|
1277 | * Returns the constructed number. |
---|
1278 | * |
---|
1279 | * Common cases, where there are few enough digits that the number can be |
---|
1280 | * represented with at most roundoff, are handled specially here. If the |
---|
1281 | * number requires more than one rounded operation to compute, the code |
---|
1282 | * promotes the significand to a bignum and calls MakeHighPrecisionDouble |
---|
1283 | * to do it instead. |
---|
1284 | * |
---|
1285 | *---------------------------------------------------------------------- |
---|
1286 | */ |
---|
1287 | |
---|
1288 | static double |
---|
1289 | MakeLowPrecisionDouble( |
---|
1290 | int signum, /* 1 if the number is negative, 0 otherwise */ |
---|
1291 | Tcl_WideUInt significand, /* Significand of the number */ |
---|
1292 | int numSigDigs, /* Number of digits in the significand */ |
---|
1293 | int exponent) /* Power of ten */ |
---|
1294 | { |
---|
1295 | double retval; /* Value of the number */ |
---|
1296 | mp_int significandBig; /* Significand expressed as a bignum */ |
---|
1297 | |
---|
1298 | /* |
---|
1299 | * With gcc on x86, the floating point rounding mode is double-extended. |
---|
1300 | * This causes the result of double-precision calculations to be rounded |
---|
1301 | * twice: once to the precision of double-extended and then again to the |
---|
1302 | * precision of double. Double-rounding introduces gratuitous errors of 1 |
---|
1303 | * ulp, so we need to change rounding mode to 53-bits. |
---|
1304 | */ |
---|
1305 | |
---|
1306 | #if defined(__GNUC__) && defined(__i386) |
---|
1307 | fpu_control_t roundTo53Bits = 0x027f; |
---|
1308 | fpu_control_t oldRoundingMode; |
---|
1309 | _FPU_GETCW(oldRoundingMode); |
---|
1310 | _FPU_SETCW(roundTo53Bits); |
---|
1311 | #endif |
---|
1312 | |
---|
1313 | /* |
---|
1314 | * Test for the easy cases. |
---|
1315 | */ |
---|
1316 | |
---|
1317 | if (numSigDigs <= DBL_DIG) { |
---|
1318 | if (exponent >= 0) { |
---|
1319 | if (exponent <= mmaxpow) { |
---|
1320 | /* |
---|
1321 | * The significand is an exact integer, and so is |
---|
1322 | * 10**exponent. The product will be correct to within 1/2 ulp |
---|
1323 | * without special handling. |
---|
1324 | */ |
---|
1325 | |
---|
1326 | retval = (double)(Tcl_WideInt)significand * pow10vals[ exponent ]; |
---|
1327 | goto returnValue; |
---|
1328 | } else { |
---|
1329 | int diff = DBL_DIG - numSigDigs; |
---|
1330 | if (exponent-diff <= mmaxpow) { |
---|
1331 | /* |
---|
1332 | * 10**exponent is not an exact integer, but |
---|
1333 | * 10**(exponent-diff) is exact, and so is |
---|
1334 | * significand*10**diff, so we can still compute the value |
---|
1335 | * with only one roundoff. |
---|
1336 | */ |
---|
1337 | |
---|
1338 | volatile double factor = |
---|
1339 | (double)(Tcl_WideInt)significand * pow10vals[diff]; |
---|
1340 | retval = factor * pow10vals[exponent-diff]; |
---|
1341 | goto returnValue; |
---|
1342 | } |
---|
1343 | } |
---|
1344 | } else { |
---|
1345 | if (exponent >= -mmaxpow) { |
---|
1346 | /* |
---|
1347 | * 10**-exponent is an exact integer, and so is the |
---|
1348 | * significand. Compute the result by one division, again with |
---|
1349 | * only one rounding. |
---|
1350 | */ |
---|
1351 | |
---|
1352 | retval = (double)(Tcl_WideInt)significand / pow10vals[-exponent]; |
---|
1353 | goto returnValue; |
---|
1354 | } |
---|
1355 | } |
---|
1356 | } |
---|
1357 | |
---|
1358 | /* |
---|
1359 | * All the easy cases have failed. Promote ths significand to bignum and |
---|
1360 | * call MakeHighPrecisionDouble to do it the hard way. |
---|
1361 | */ |
---|
1362 | |
---|
1363 | TclBNInitBignumFromWideUInt(&significandBig, significand); |
---|
1364 | retval = MakeHighPrecisionDouble(0, &significandBig, numSigDigs, |
---|
1365 | exponent); |
---|
1366 | mp_clear(&significandBig); |
---|
1367 | |
---|
1368 | /* |
---|
1369 | * Come here to return the computed value. |
---|
1370 | */ |
---|
1371 | |
---|
1372 | returnValue: |
---|
1373 | if (signum) { |
---|
1374 | retval = -retval; |
---|
1375 | } |
---|
1376 | |
---|
1377 | /* |
---|
1378 | * On gcc on x86, restore the floating point mode word. |
---|
1379 | */ |
---|
1380 | |
---|
1381 | #if defined(__GNUC__) && defined(__i386) |
---|
1382 | _FPU_SETCW(oldRoundingMode); |
---|
1383 | #endif |
---|
1384 | |
---|
1385 | return retval; |
---|
1386 | } |
---|
1387 | |
---|
1388 | /* |
---|
1389 | *---------------------------------------------------------------------- |
---|
1390 | * |
---|
1391 | * MakeHighPrecisionDouble -- |
---|
1392 | * |
---|
1393 | * Makes the double precision number, signum*significand*10**exponent. |
---|
1394 | * |
---|
1395 | * Results: |
---|
1396 | * Returns the constructed number. |
---|
1397 | * |
---|
1398 | * MakeHighPrecisionDouble is used when arbitrary-precision arithmetic is |
---|
1399 | * needed to ensure correct rounding. It begins by calculating a |
---|
1400 | * low-precision approximation to the desired number, and then refines |
---|
1401 | * the answer in high precision. |
---|
1402 | * |
---|
1403 | *---------------------------------------------------------------------- |
---|
1404 | */ |
---|
1405 | |
---|
1406 | static double |
---|
1407 | MakeHighPrecisionDouble( |
---|
1408 | int signum, /* 1=negative, 0=nonnegative */ |
---|
1409 | mp_int *significand, /* Exact significand of the number */ |
---|
1410 | int numSigDigs, /* Number of significant digits */ |
---|
1411 | int exponent) /* Power of 10 by which to multiply */ |
---|
1412 | { |
---|
1413 | double retval; |
---|
1414 | int machexp; /* Machine exponent of a power of 10 */ |
---|
1415 | |
---|
1416 | /* |
---|
1417 | * With gcc on x86, the floating point rounding mode is double-extended. |
---|
1418 | * This causes the result of double-precision calculations to be rounded |
---|
1419 | * twice: once to the precision of double-extended and then again to the |
---|
1420 | * precision of double. Double-rounding introduces gratuitous errors of 1 |
---|
1421 | * ulp, so we need to change rounding mode to 53-bits. |
---|
1422 | */ |
---|
1423 | |
---|
1424 | #if defined(__GNUC__) && defined(__i386) |
---|
1425 | fpu_control_t roundTo53Bits = 0x027f; |
---|
1426 | fpu_control_t oldRoundingMode; |
---|
1427 | _FPU_GETCW(oldRoundingMode); |
---|
1428 | _FPU_SETCW(roundTo53Bits); |
---|
1429 | #endif |
---|
1430 | |
---|
1431 | /* |
---|
1432 | * Quick checks for over/underflow. |
---|
1433 | */ |
---|
1434 | |
---|
1435 | if (numSigDigs+exponent-1 > maxDigits) { |
---|
1436 | retval = HUGE_VAL; |
---|
1437 | goto returnValue; |
---|
1438 | } |
---|
1439 | if (numSigDigs+exponent-1 < minDigits) { |
---|
1440 | retval = 0; |
---|
1441 | goto returnValue; |
---|
1442 | } |
---|
1443 | |
---|
1444 | /* |
---|
1445 | * Develop a first approximation to the significand. It is tempting simply |
---|
1446 | * to force bignum to double, but that will overflow on input numbers like |
---|
1447 | * 1.[string repeat 0 1000]1; while this is a not terribly likely |
---|
1448 | * scenario, we still have to deal with it. Use fraction and exponent |
---|
1449 | * instead. Once we have the significand, multiply by 10**exponent. Test |
---|
1450 | * for overflow. Convert back to a double, and test for underflow. |
---|
1451 | */ |
---|
1452 | |
---|
1453 | retval = BignumToBiasedFrExp(significand, &machexp); |
---|
1454 | retval = Pow10TimesFrExp(exponent, retval, &machexp); |
---|
1455 | if (machexp > DBL_MAX_EXP*log2FLT_RADIX) { |
---|
1456 | retval = HUGE_VAL; |
---|
1457 | goto returnValue; |
---|
1458 | } |
---|
1459 | retval = SafeLdExp(retval, machexp); |
---|
1460 | if (retval < tiny) { |
---|
1461 | retval = tiny; |
---|
1462 | } |
---|
1463 | |
---|
1464 | /* |
---|
1465 | * Refine the result twice. (The second refinement should be necessary |
---|
1466 | * only if the best approximation is a power of 2 minus 1/2 ulp). |
---|
1467 | */ |
---|
1468 | |
---|
1469 | retval = RefineApproximation(retval, significand, exponent); |
---|
1470 | retval = RefineApproximation(retval, significand, exponent); |
---|
1471 | |
---|
1472 | /* |
---|
1473 | * Come here to return the computed value. |
---|
1474 | */ |
---|
1475 | |
---|
1476 | returnValue: |
---|
1477 | if (signum) { |
---|
1478 | retval = -retval; |
---|
1479 | } |
---|
1480 | |
---|
1481 | /* |
---|
1482 | * On gcc on x86, restore the floating point mode word. |
---|
1483 | */ |
---|
1484 | |
---|
1485 | #if defined(__GNUC__) && defined(__i386) |
---|
1486 | _FPU_SETCW(oldRoundingMode); |
---|
1487 | #endif |
---|
1488 | return retval; |
---|
1489 | } |
---|
1490 | |
---|
1491 | /* |
---|
1492 | *---------------------------------------------------------------------- |
---|
1493 | * |
---|
1494 | * MakeNaN -- |
---|
1495 | * |
---|
1496 | * Makes a "Not a Number" given a set of bits to put in the tag bits |
---|
1497 | * |
---|
1498 | * Note that a signalling NaN is never returned. |
---|
1499 | * |
---|
1500 | *---------------------------------------------------------------------- |
---|
1501 | */ |
---|
1502 | |
---|
1503 | #ifdef IEEE_FLOATING_POINT |
---|
1504 | static double |
---|
1505 | MakeNaN( |
---|
1506 | int signum, /* Sign bit (1=negative, 0=nonnegative */ |
---|
1507 | Tcl_WideUInt tags) /* Tag bits to put in the NaN */ |
---|
1508 | { |
---|
1509 | union { |
---|
1510 | Tcl_WideUInt iv; |
---|
1511 | double dv; |
---|
1512 | } theNaN; |
---|
1513 | |
---|
1514 | theNaN.iv = tags; |
---|
1515 | theNaN.iv &= (((Tcl_WideUInt) 1) << 51) - 1; |
---|
1516 | if (signum) { |
---|
1517 | theNaN.iv |= ((Tcl_WideUInt) (0x8000 | NAN_START)) << 48; |
---|
1518 | } else { |
---|
1519 | theNaN.iv |= ((Tcl_WideUInt) NAN_START) << 48; |
---|
1520 | } |
---|
1521 | if (n770_fp) { |
---|
1522 | theNaN.iv = Nokia770Twiddle(theNaN.iv); |
---|
1523 | } |
---|
1524 | return theNaN.dv; |
---|
1525 | } |
---|
1526 | #endif |
---|
1527 | |
---|
1528 | /* |
---|
1529 | *---------------------------------------------------------------------- |
---|
1530 | * |
---|
1531 | * RefineApproximation -- |
---|
1532 | * |
---|
1533 | * Given a poor approximation to a floating point number, returns a |
---|
1534 | * better one. (The better approximation is correct to within 1 ulp, and |
---|
1535 | * is entirely correct if the poor approximation is correct to 1 ulp.) |
---|
1536 | * |
---|
1537 | * Results: |
---|
1538 | * Returns the improved result. |
---|
1539 | * |
---|
1540 | *---------------------------------------------------------------------- |
---|
1541 | */ |
---|
1542 | |
---|
1543 | static double |
---|
1544 | RefineApproximation( |
---|
1545 | double approxResult, /* Approximate result of conversion */ |
---|
1546 | mp_int *exactSignificand, /* Integer significand */ |
---|
1547 | int exponent) /* Power of 10 to multiply by significand */ |
---|
1548 | { |
---|
1549 | int M2, M5; /* Powers of 2 and of 5 needed to put the |
---|
1550 | * decimal and binary numbers over a common |
---|
1551 | * denominator. */ |
---|
1552 | double significand; /* Sigificand of the binary number */ |
---|
1553 | int binExponent; /* Exponent of the binary number */ |
---|
1554 | int msb; /* Most significant bit position of an |
---|
1555 | * intermediate result */ |
---|
1556 | int nDigits; /* Number of mp_digit's in an intermediate |
---|
1557 | * result */ |
---|
1558 | mp_int twoMv; /* Approx binary value expressed as an exact |
---|
1559 | * integer scaled by the multiplier 2M */ |
---|
1560 | mp_int twoMd; /* Exact decimal value expressed as an exact |
---|
1561 | * integer scaled by the multiplier 2M */ |
---|
1562 | int scale; /* Scale factor for M */ |
---|
1563 | int multiplier; /* Power of two to scale M */ |
---|
1564 | double num, den; /* Numerator and denominator of the correction |
---|
1565 | * term */ |
---|
1566 | double quot; /* Correction term */ |
---|
1567 | double minincr; /* Lower bound on the absolute value of the |
---|
1568 | * correction term. */ |
---|
1569 | int i; |
---|
1570 | |
---|
1571 | /* |
---|
1572 | * The first approximation is always low. If we find that it's HUGE_VAL, |
---|
1573 | * we're done. |
---|
1574 | */ |
---|
1575 | |
---|
1576 | if (approxResult == HUGE_VAL) { |
---|
1577 | return approxResult; |
---|
1578 | } |
---|
1579 | |
---|
1580 | /* |
---|
1581 | * Find a common denominator for the decimal and binary fractions. The |
---|
1582 | * common denominator will be 2**M2 + 5**M5. |
---|
1583 | */ |
---|
1584 | |
---|
1585 | significand = frexp(approxResult, &binExponent); |
---|
1586 | i = mantBits - binExponent; |
---|
1587 | if (i < 0) { |
---|
1588 | M2 = 0; |
---|
1589 | } else { |
---|
1590 | M2 = i; |
---|
1591 | } |
---|
1592 | if (exponent > 0) { |
---|
1593 | M5 = 0; |
---|
1594 | } else { |
---|
1595 | M5 = -exponent; |
---|
1596 | if ((M5-1) > M2) { |
---|
1597 | M2 = M5-1; |
---|
1598 | } |
---|
1599 | } |
---|
1600 | |
---|
1601 | /* |
---|
1602 | * The floating point number is significand*2**binExponent. Compute the |
---|
1603 | * large integer significand*2**(binExponent+M2+1). The 2**-1 bit of the |
---|
1604 | * significand (the most significant) corresponds to the |
---|
1605 | * 2**(binExponent+M2 + 1) bit of 2*M2*v. Allocate enough digits to hold |
---|
1606 | * that quantity, then convert the significand to a large integer, scaled |
---|
1607 | * appropriately. Then multiply by the appropriate power of 5. |
---|
1608 | */ |
---|
1609 | |
---|
1610 | msb = binExponent + M2; /* 1008 */ |
---|
1611 | nDigits = msb / DIGIT_BIT + 1; |
---|
1612 | mp_init_size(&twoMv, nDigits); |
---|
1613 | i = (msb % DIGIT_BIT + 1); |
---|
1614 | twoMv.used = nDigits; |
---|
1615 | significand *= SafeLdExp(1.0, i); |
---|
1616 | while (--nDigits >= 0) { |
---|
1617 | twoMv.dp[nDigits] = (mp_digit) significand; |
---|
1618 | significand -= (mp_digit) significand; |
---|
1619 | significand = SafeLdExp(significand, DIGIT_BIT); |
---|
1620 | } |
---|
1621 | for (i = 0; i <= 8; ++i) { |
---|
1622 | if (M5 & (1 << i)) { |
---|
1623 | mp_mul(&twoMv, pow5+i, &twoMv); |
---|
1624 | } |
---|
1625 | } |
---|
1626 | |
---|
1627 | /* |
---|
1628 | * Collect the decimal significand as a high precision integer. The least |
---|
1629 | * significant bit corresponds to bit M2+exponent+1 so it will need to be |
---|
1630 | * shifted left by that many bits after being multiplied by |
---|
1631 | * 5**(M5+exponent). |
---|
1632 | */ |
---|
1633 | |
---|
1634 | mp_init_copy(&twoMd, exactSignificand); |
---|
1635 | for (i=0; i<=8; ++i) { |
---|
1636 | if ((M5+exponent) & (1 << i)) { |
---|
1637 | mp_mul(&twoMd, pow5+i, &twoMd); |
---|
1638 | } |
---|
1639 | } |
---|
1640 | mp_mul_2d(&twoMd, M2+exponent+1, &twoMd); |
---|
1641 | mp_sub(&twoMd, &twoMv, &twoMd); |
---|
1642 | |
---|
1643 | /* |
---|
1644 | * The result, 2Mv-2Md, needs to be divided by 2M to yield a correction |
---|
1645 | * term. Because 2M may well overflow a double, we need to scale the |
---|
1646 | * denominator by a factor of 2**binExponent-mantBits |
---|
1647 | */ |
---|
1648 | |
---|
1649 | scale = binExponent - mantBits - 1; |
---|
1650 | |
---|
1651 | mp_set(&twoMv, 1); |
---|
1652 | for (i=0; i<=8; ++i) { |
---|
1653 | if (M5 & (1 << i)) { |
---|
1654 | mp_mul(&twoMv, pow5+i, &twoMv); |
---|
1655 | } |
---|
1656 | } |
---|
1657 | multiplier = M2 + scale + 1; |
---|
1658 | if (multiplier > 0) { |
---|
1659 | mp_mul_2d(&twoMv, multiplier, &twoMv); |
---|
1660 | } else if (multiplier < 0) { |
---|
1661 | mp_div_2d(&twoMv, -multiplier, &twoMv, NULL); |
---|
1662 | } |
---|
1663 | |
---|
1664 | /* |
---|
1665 | * If the result is less than unity, the error is less than 1/2 unit in |
---|
1666 | * the last place, so there's no correction to make. |
---|
1667 | */ |
---|
1668 | |
---|
1669 | if (mp_cmp_mag(&twoMd, &twoMv) == MP_LT) { |
---|
1670 | mp_clear(&twoMd); |
---|
1671 | mp_clear(&twoMv); |
---|
1672 | return approxResult; |
---|
1673 | } |
---|
1674 | |
---|
1675 | /* |
---|
1676 | * Convert the numerator and denominator of the corrector term accurately |
---|
1677 | * to floating point numbers. |
---|
1678 | */ |
---|
1679 | |
---|
1680 | num = TclBignumToDouble(&twoMd); |
---|
1681 | den = TclBignumToDouble(&twoMv); |
---|
1682 | |
---|
1683 | quot = SafeLdExp(num/den, scale); |
---|
1684 | minincr = SafeLdExp(1.0, binExponent-mantBits); |
---|
1685 | |
---|
1686 | if (quot<0. && quot>-minincr) { |
---|
1687 | quot = -minincr; |
---|
1688 | } else if (quot>0. && quot<minincr) { |
---|
1689 | quot = minincr; |
---|
1690 | } |
---|
1691 | |
---|
1692 | mp_clear(&twoMd); |
---|
1693 | mp_clear(&twoMv); |
---|
1694 | |
---|
1695 | return approxResult + quot; |
---|
1696 | } |
---|
1697 | |
---|
1698 | /* |
---|
1699 | *---------------------------------------------------------------------- |
---|
1700 | * |
---|
1701 | * TclDoubleDigits -- |
---|
1702 | * |
---|
1703 | * Converts a double to a string of digits. |
---|
1704 | * |
---|
1705 | * Results: |
---|
1706 | * Returns the position of the character in the string after which the |
---|
1707 | * decimal point should appear. Since the string contains only |
---|
1708 | * significant digits, the position may be less than zero or greater than |
---|
1709 | * the length of the string. |
---|
1710 | * |
---|
1711 | * Side effects: |
---|
1712 | * Stores the digits in the given buffer and sets 'signum' according to |
---|
1713 | * the sign of the number. |
---|
1714 | * |
---|
1715 | *---------------------------------------------------------------------- |
---|
1716 | |
---|
1717 | */ |
---|
1718 | |
---|
1719 | int |
---|
1720 | TclDoubleDigits( |
---|
1721 | char *buffer, /* Buffer in which to store the result, must |
---|
1722 | * have at least 18 chars */ |
---|
1723 | double v, /* Number to convert. Must be finite, and not |
---|
1724 | * NaN */ |
---|
1725 | int *signum) /* Output: 1 if the number is negative. |
---|
1726 | * Should handle -0 correctly on the IEEE |
---|
1727 | * architecture. */ |
---|
1728 | { |
---|
1729 | int e; /* Power of FLT_RADIX that satisfies |
---|
1730 | * v = f * FLT_RADIX**e */ |
---|
1731 | int lowOK, highOK; |
---|
1732 | mp_int r; /* Scaled significand. */ |
---|
1733 | mp_int s; /* Divisor such that v = r / s */ |
---|
1734 | int smallestSig; /* Flag == 1 iff v's significand is the |
---|
1735 | * smallest that can be represented. */ |
---|
1736 | mp_int mplus; /* Scaled epsilon: (r + 2* mplus) == v(+) |
---|
1737 | * where v(+) is the floating point successor |
---|
1738 | * of v. */ |
---|
1739 | mp_int mminus; /* Scaled epsilon: (r - 2*mminus) == v(-) |
---|
1740 | * where v(-) is the floating point |
---|
1741 | * predecessor of v. */ |
---|
1742 | mp_int temp; |
---|
1743 | int rfac2 = 0; /* Powers of 2 and 5 by which large */ |
---|
1744 | int rfac5 = 0; /* integers should be scaled. */ |
---|
1745 | int sfac2 = 0; |
---|
1746 | int sfac5 = 0; |
---|
1747 | int mplusfac2 = 0; |
---|
1748 | int mminusfac2 = 0; |
---|
1749 | char c; |
---|
1750 | int i, k, n; |
---|
1751 | |
---|
1752 | /* |
---|
1753 | * Split the number into absolute value and signum. |
---|
1754 | */ |
---|
1755 | |
---|
1756 | v = AbsoluteValue(v, signum); |
---|
1757 | |
---|
1758 | /* |
---|
1759 | * Handle zero specially. |
---|
1760 | */ |
---|
1761 | |
---|
1762 | if (v == 0.0) { |
---|
1763 | *buffer++ = '0'; |
---|
1764 | *buffer++ = '\0'; |
---|
1765 | return 1; |
---|
1766 | } |
---|
1767 | |
---|
1768 | /* |
---|
1769 | * Find a large integer r, and integer e, such that |
---|
1770 | * v = r * FLT_RADIX**e |
---|
1771 | * and r is as small as possible. Also determine whether the significand |
---|
1772 | * is the smallest possible. |
---|
1773 | */ |
---|
1774 | |
---|
1775 | smallestSig = GetIntegerTimesPower(v, &r, &e); |
---|
1776 | |
---|
1777 | lowOK = highOK = (mp_iseven(&r)); |
---|
1778 | |
---|
1779 | /* |
---|
1780 | * We are going to want to develop integers r, s, mplus, and mminus such |
---|
1781 | * that v = r / s, v(+)-v / 2 = mplus / s; v-v(-) / 2 = mminus / s and |
---|
1782 | * then scale either s or r, mplus, mminus by an appropriate power of ten. |
---|
1783 | * |
---|
1784 | * We actually do this by keeping track of the powers of 2 and 5 by which |
---|
1785 | * f is multiplied to yield v and by which 1 is multiplied to yield s, |
---|
1786 | * mplus, and mminus. |
---|
1787 | */ |
---|
1788 | |
---|
1789 | if (e >= 0) { |
---|
1790 | int bits = e * log2FLT_RADIX; |
---|
1791 | |
---|
1792 | if (!smallestSig) { |
---|
1793 | /* |
---|
1794 | * Normal case, m+ and m- are both FLT_RADIX**e |
---|
1795 | */ |
---|
1796 | |
---|
1797 | rfac2 = bits + 1; |
---|
1798 | sfac2 = 1; |
---|
1799 | mplusfac2 = bits; |
---|
1800 | mminusfac2 = bits; |
---|
1801 | } else { |
---|
1802 | /* |
---|
1803 | * If f is equal to the smallest significand, then we need another |
---|
1804 | * factor of FLT_RADIX in s to cope with stepping to the next |
---|
1805 | * smaller exponent when going to e's predecessor. |
---|
1806 | */ |
---|
1807 | |
---|
1808 | rfac2 = bits + log2FLT_RADIX + 1; |
---|
1809 | sfac2 = 1 + log2FLT_RADIX; |
---|
1810 | mplusfac2 = bits + log2FLT_RADIX; |
---|
1811 | mminusfac2 = bits; |
---|
1812 | } |
---|
1813 | } else { |
---|
1814 | /* |
---|
1815 | * v has digits after the binary point |
---|
1816 | */ |
---|
1817 | |
---|
1818 | if (e <= DBL_MIN_EXP-DBL_MANT_DIG || !smallestSig) { |
---|
1819 | /* |
---|
1820 | * Either f isn't the smallest significand or e is the smallest |
---|
1821 | * exponent. mplus and mminus will both be 1. |
---|
1822 | */ |
---|
1823 | |
---|
1824 | rfac2 = 1; |
---|
1825 | sfac2 = 1 - e * log2FLT_RADIX; |
---|
1826 | mplusfac2 = 0; |
---|
1827 | mminusfac2 = 0; |
---|
1828 | } else { |
---|
1829 | /* |
---|
1830 | * f is the smallest significand, but e is not the smallest |
---|
1831 | * exponent. We need to scale by FLT_RADIX again to cope with the |
---|
1832 | * fact that v's predecessor has a smaller exponent. |
---|
1833 | */ |
---|
1834 | |
---|
1835 | rfac2 = 1 + log2FLT_RADIX; |
---|
1836 | sfac2 = 1 + log2FLT_RADIX * (1 - e); |
---|
1837 | mplusfac2 = FLT_RADIX; |
---|
1838 | mminusfac2 = 0; |
---|
1839 | } |
---|
1840 | } |
---|
1841 | |
---|
1842 | /* |
---|
1843 | * Estimate the highest power of ten that will be needed to hold the |
---|
1844 | * result. |
---|
1845 | */ |
---|
1846 | |
---|
1847 | k = (int) ceil(log(v) / log(10.)); |
---|
1848 | if (k >= 0) { |
---|
1849 | sfac2 += k; |
---|
1850 | sfac5 = k; |
---|
1851 | } else { |
---|
1852 | rfac2 -= k; |
---|
1853 | mplusfac2 -= k; |
---|
1854 | mminusfac2 -= k; |
---|
1855 | rfac5 = -k; |
---|
1856 | } |
---|
1857 | |
---|
1858 | /* |
---|
1859 | * Scale r, s, mplus, mminus by the appropriate powers of 2 and 5. |
---|
1860 | */ |
---|
1861 | |
---|
1862 | mp_init_set(&mplus, 1); |
---|
1863 | for (i=0 ; i<=8 ; ++i) { |
---|
1864 | if (rfac5 & (1 << i)) { |
---|
1865 | mp_mul(&mplus, pow5+i, &mplus); |
---|
1866 | } |
---|
1867 | } |
---|
1868 | mp_mul(&r, &mplus, &r); |
---|
1869 | mp_mul_2d(&r, rfac2, &r); |
---|
1870 | mp_init_copy(&mminus, &mplus); |
---|
1871 | mp_mul_2d(&mplus, mplusfac2, &mplus); |
---|
1872 | mp_mul_2d(&mminus, mminusfac2, &mminus); |
---|
1873 | mp_init_set(&s, 1); |
---|
1874 | for (i=0 ; i<=8 ; ++i) { |
---|
1875 | if (sfac5 & (1 << i)) { |
---|
1876 | mp_mul(&s, pow5+i, &s); |
---|
1877 | } |
---|
1878 | } |
---|
1879 | mp_mul_2d(&s, sfac2, &s); |
---|
1880 | |
---|
1881 | /* |
---|
1882 | * It is possible for k to be off by one because we used an inexact |
---|
1883 | * logarithm. |
---|
1884 | */ |
---|
1885 | |
---|
1886 | mp_init(&temp); |
---|
1887 | mp_add(&r, &mplus, &temp); |
---|
1888 | i = mp_cmp_mag(&temp, &s); |
---|
1889 | if (i>0 || (highOK && i==0)) { |
---|
1890 | mp_mul_d(&s, 10, &s); |
---|
1891 | ++k; |
---|
1892 | } else { |
---|
1893 | mp_mul_d(&temp, 10, &temp); |
---|
1894 | i = mp_cmp_mag(&temp, &s); |
---|
1895 | if (i<0 || (highOK && i==0)) { |
---|
1896 | mp_mul_d(&r, 10, &r); |
---|
1897 | mp_mul_d(&mplus, 10, &mplus); |
---|
1898 | mp_mul_d(&mminus, 10, &mminus); |
---|
1899 | --k; |
---|
1900 | } |
---|
1901 | } |
---|
1902 | |
---|
1903 | /* |
---|
1904 | * At this point, k contains the power of ten by which we're scaling the |
---|
1905 | * result. r/s is at least 1/10 and strictly less than ten, and v = r/s * |
---|
1906 | * 10**k. mplus and mminus give the rounding limits. |
---|
1907 | */ |
---|
1908 | |
---|
1909 | for (;;) { |
---|
1910 | int tc1, tc2; |
---|
1911 | |
---|
1912 | mp_mul_d(&r, 10, &r); |
---|
1913 | mp_div(&r, &s, &temp, &r); /* temp = 10r / s; r = 10r mod s */ |
---|
1914 | i = temp.dp[0]; |
---|
1915 | mp_mul_d(&mplus, 10, &mplus); |
---|
1916 | mp_mul_d(&mminus, 10, &mminus); |
---|
1917 | tc1 = mp_cmp_mag(&r, &mminus); |
---|
1918 | if (lowOK) { |
---|
1919 | tc1 = (tc1 <= 0); |
---|
1920 | } else { |
---|
1921 | tc1 = (tc1 < 0); |
---|
1922 | } |
---|
1923 | mp_add(&r, &mplus, &temp); |
---|
1924 | tc2 = mp_cmp_mag(&temp, &s); |
---|
1925 | if (highOK) { |
---|
1926 | tc2 = (tc2 >= 0); |
---|
1927 | } else { |
---|
1928 | tc2= (tc2 > 0); |
---|
1929 | } |
---|
1930 | if (!tc1) { |
---|
1931 | if (!tc2) { |
---|
1932 | *buffer++ = '0' + i; |
---|
1933 | } else { |
---|
1934 | c = (char) (i + '1'); |
---|
1935 | break; |
---|
1936 | } |
---|
1937 | } else { |
---|
1938 | if (!tc2) { |
---|
1939 | c = (char) (i + '0'); |
---|
1940 | } else { |
---|
1941 | mp_mul_2d(&r, 1, &r); |
---|
1942 | n = mp_cmp_mag(&r, &s); |
---|
1943 | if (n < 0) { |
---|
1944 | c = (char) (i + '0'); |
---|
1945 | } else { |
---|
1946 | c = (char) (i + '1'); |
---|
1947 | } |
---|
1948 | } |
---|
1949 | break; |
---|
1950 | } |
---|
1951 | }; |
---|
1952 | *buffer++ = c; |
---|
1953 | *buffer++ = '\0'; |
---|
1954 | |
---|
1955 | /* |
---|
1956 | * Free memory, and return. |
---|
1957 | */ |
---|
1958 | |
---|
1959 | mp_clear_multi(&r, &s, &mplus, &mminus, &temp, NULL); |
---|
1960 | return k; |
---|
1961 | } |
---|
1962 | |
---|
1963 | /* |
---|
1964 | *---------------------------------------------------------------------- |
---|
1965 | * |
---|
1966 | * AbsoluteValue -- |
---|
1967 | * |
---|
1968 | * Splits a 'double' into its absolute value and sign. |
---|
1969 | * |
---|
1970 | * Results: |
---|
1971 | * Returns the absolute value. |
---|
1972 | * |
---|
1973 | * Side effects: |
---|
1974 | * Stores the signum in '*signum'. |
---|
1975 | * |
---|
1976 | *---------------------------------------------------------------------- |
---|
1977 | */ |
---|
1978 | |
---|
1979 | static double |
---|
1980 | AbsoluteValue( |
---|
1981 | double v, /* Number to split */ |
---|
1982 | int *signum) /* (Output) Sign of the number 1=-, 0=+ */ |
---|
1983 | { |
---|
1984 | /* |
---|
1985 | * Take the absolute value of the number, and report the number's sign. |
---|
1986 | * Take special steps to preserve signed zeroes in IEEE floating point. |
---|
1987 | * (We can't use fpclassify, because that's a C9x feature and we still |
---|
1988 | * have to build on C89 compilers.) |
---|
1989 | */ |
---|
1990 | |
---|
1991 | #ifndef IEEE_FLOATING_POINT |
---|
1992 | if (v >= 0.0) { |
---|
1993 | *signum = 0; |
---|
1994 | } else { |
---|
1995 | *signum = 1; |
---|
1996 | v = -v; |
---|
1997 | } |
---|
1998 | #else |
---|
1999 | union { |
---|
2000 | Tcl_WideUInt iv; |
---|
2001 | double dv; |
---|
2002 | } bitwhack; |
---|
2003 | bitwhack.dv = v; |
---|
2004 | if (n770_fp) { |
---|
2005 | bitwhack.iv = Nokia770Twiddle(bitwhack.iv); |
---|
2006 | } |
---|
2007 | if (bitwhack.iv & ((Tcl_WideUInt) 1 << 63)) { |
---|
2008 | *signum = 1; |
---|
2009 | bitwhack.iv &= ~((Tcl_WideUInt) 1 << 63); |
---|
2010 | if (n770_fp) { |
---|
2011 | bitwhack.iv = Nokia770Twiddle(bitwhack.iv); |
---|
2012 | } |
---|
2013 | v = bitwhack.dv; |
---|
2014 | } else { |
---|
2015 | *signum = 0; |
---|
2016 | } |
---|
2017 | #endif |
---|
2018 | return v; |
---|
2019 | } |
---|
2020 | |
---|
2021 | /* |
---|
2022 | *---------------------------------------------------------------------- |
---|
2023 | * |
---|
2024 | * GetIntegerTimesPower -- |
---|
2025 | * |
---|
2026 | * Converts a floating point number to an exact integer times a power of |
---|
2027 | * the floating point radix. |
---|
2028 | * |
---|
2029 | * Results: |
---|
2030 | * Returns 1 if it converted the smallest significand, 0 otherwise. |
---|
2031 | * |
---|
2032 | * Side effects: |
---|
2033 | * Initializes the integer value (does not just assign it), and stores |
---|
2034 | * the exponent. |
---|
2035 | * |
---|
2036 | *---------------------------------------------------------------------- |
---|
2037 | */ |
---|
2038 | |
---|
2039 | static int |
---|
2040 | GetIntegerTimesPower( |
---|
2041 | double v, /* Value to convert */ |
---|
2042 | mp_int *rPtr, /* (Output) Integer value */ |
---|
2043 | int *ePtr) /* (Output) Power of FLT_RADIX by which r must |
---|
2044 | * be multiplied to yield v*/ |
---|
2045 | { |
---|
2046 | double a, f; |
---|
2047 | int e, i, n; |
---|
2048 | |
---|
2049 | /* |
---|
2050 | * Develop f and e such that v = f * FLT_RADIX**e, with |
---|
2051 | * 1.0/FLT_RADIX <= f < 1. |
---|
2052 | */ |
---|
2053 | |
---|
2054 | f = frexp(v, &e); |
---|
2055 | #if FLT_RADIX > 2 |
---|
2056 | n = e % log2FLT_RADIX; |
---|
2057 | if (n > 0) { |
---|
2058 | n -= log2FLT_RADIX; |
---|
2059 | e += 1; |
---|
2060 | f *= ldexp(1.0, n); |
---|
2061 | } |
---|
2062 | e = (e - n) / log2FLT_RADIX; |
---|
2063 | #endif |
---|
2064 | if (f == 1.0) { |
---|
2065 | f = 1.0 / FLT_RADIX; |
---|
2066 | e += 1; |
---|
2067 | } |
---|
2068 | |
---|
2069 | /* |
---|
2070 | * If the original number was denormalized, adjust e and f to be denormal |
---|
2071 | * as well. |
---|
2072 | */ |
---|
2073 | |
---|
2074 | if (e < DBL_MIN_EXP) { |
---|
2075 | n = mantBits + (e - DBL_MIN_EXP)*log2FLT_RADIX; |
---|
2076 | f = ldexp(f, (e - DBL_MIN_EXP)*log2FLT_RADIX); |
---|
2077 | e = DBL_MIN_EXP; |
---|
2078 | n = (n + DIGIT_BIT - 1) / DIGIT_BIT; |
---|
2079 | } else { |
---|
2080 | n = mantDIGIT; |
---|
2081 | } |
---|
2082 | |
---|
2083 | /* |
---|
2084 | * Now extract the base-2**DIGIT_BIT digits of f into a multi-precision |
---|
2085 | * integer r. Preserve the invariant v = r * 2**rfac2 * FLT_RADIX**e by |
---|
2086 | * adjusting e. |
---|
2087 | */ |
---|
2088 | |
---|
2089 | a = f; |
---|
2090 | n = mantDIGIT; |
---|
2091 | mp_init_size(rPtr, n); |
---|
2092 | rPtr->used = n; |
---|
2093 | rPtr->sign = MP_ZPOS; |
---|
2094 | i = (mantBits % DIGIT_BIT); |
---|
2095 | if (i == 0) { |
---|
2096 | i = DIGIT_BIT; |
---|
2097 | } |
---|
2098 | while (n > 0) { |
---|
2099 | a *= ldexp(1.0, i); |
---|
2100 | i = DIGIT_BIT; |
---|
2101 | rPtr->dp[--n] = (mp_digit) a; |
---|
2102 | a -= (mp_digit) a; |
---|
2103 | } |
---|
2104 | *ePtr = e - DBL_MANT_DIG; |
---|
2105 | return (f == 1.0 / FLT_RADIX); |
---|
2106 | } |
---|
2107 | |
---|
2108 | /* |
---|
2109 | *---------------------------------------------------------------------- |
---|
2110 | * |
---|
2111 | * TclInitDoubleConversion -- |
---|
2112 | * |
---|
2113 | * Initializes constants that are needed for conversions to and from |
---|
2114 | * 'double' |
---|
2115 | * |
---|
2116 | * Results: |
---|
2117 | * None. |
---|
2118 | * |
---|
2119 | * Side effects: |
---|
2120 | * The log base 2 of the floating point radix, the number of bits in a |
---|
2121 | * double mantissa, and a table of the powers of five and ten are |
---|
2122 | * computed and stored. |
---|
2123 | * |
---|
2124 | *---------------------------------------------------------------------- |
---|
2125 | */ |
---|
2126 | |
---|
2127 | void |
---|
2128 | TclInitDoubleConversion(void) |
---|
2129 | { |
---|
2130 | int i; |
---|
2131 | int x; |
---|
2132 | Tcl_WideUInt u; |
---|
2133 | double d; |
---|
2134 | |
---|
2135 | #ifdef IEEE_FLOATING_POINT |
---|
2136 | union { |
---|
2137 | double dv; |
---|
2138 | Tcl_WideUInt iv; |
---|
2139 | } bitwhack; |
---|
2140 | #endif |
---|
2141 | |
---|
2142 | /* |
---|
2143 | * Initialize table of powers of 10 expressed as wide integers. |
---|
2144 | */ |
---|
2145 | |
---|
2146 | maxpow10_wide = (int) |
---|
2147 | floor(sizeof(Tcl_WideUInt) * CHAR_BIT * log(2.) / log(10.)); |
---|
2148 | pow10_wide = (Tcl_WideUInt *) |
---|
2149 | ckalloc((maxpow10_wide + 1) * sizeof(Tcl_WideUInt)); |
---|
2150 | u = 1; |
---|
2151 | for (i = 0; i < maxpow10_wide; ++i) { |
---|
2152 | pow10_wide[i] = u; |
---|
2153 | u *= 10; |
---|
2154 | } |
---|
2155 | pow10_wide[i] = u; |
---|
2156 | |
---|
2157 | /* |
---|
2158 | * Determine how many bits of precision a double has, and how many |
---|
2159 | * decimal digits that represents. |
---|
2160 | */ |
---|
2161 | |
---|
2162 | if (frexp((double) FLT_RADIX, &log2FLT_RADIX) != 0.5) { |
---|
2163 | Tcl_Panic("This code doesn't work on a decimal machine!"); |
---|
2164 | } |
---|
2165 | --log2FLT_RADIX; |
---|
2166 | mantBits = DBL_MANT_DIG * log2FLT_RADIX; |
---|
2167 | d = 1.0; |
---|
2168 | |
---|
2169 | /* |
---|
2170 | * Initialize a table of powers of ten that can be exactly represented |
---|
2171 | * in a double. |
---|
2172 | */ |
---|
2173 | |
---|
2174 | x = (int) (DBL_MANT_DIG * log((double) FLT_RADIX) / log(5.0)); |
---|
2175 | if (x < MAXPOW) { |
---|
2176 | mmaxpow = x; |
---|
2177 | } else { |
---|
2178 | mmaxpow = MAXPOW; |
---|
2179 | } |
---|
2180 | for (i=0 ; i<=mmaxpow ; ++i) { |
---|
2181 | pow10vals[i] = d; |
---|
2182 | d *= 10.0; |
---|
2183 | } |
---|
2184 | |
---|
2185 | /* |
---|
2186 | * Initialize a table of large powers of five. |
---|
2187 | */ |
---|
2188 | |
---|
2189 | for (i=0; i<9; ++i) { |
---|
2190 | mp_init(pow5 + i); |
---|
2191 | } |
---|
2192 | mp_set(pow5, 5); |
---|
2193 | for (i=0; i<8; ++i) { |
---|
2194 | mp_sqr(pow5+i, pow5+i+1); |
---|
2195 | } |
---|
2196 | |
---|
2197 | /* |
---|
2198 | * Determine the number of decimal digits to the left and right of the |
---|
2199 | * decimal point in the largest and smallest double, the smallest double |
---|
2200 | * that differs from zero, and the number of mp_digits needed to represent |
---|
2201 | * the significand of a double. |
---|
2202 | */ |
---|
2203 | |
---|
2204 | tiny = SafeLdExp(1.0, DBL_MIN_EXP * log2FLT_RADIX - mantBits); |
---|
2205 | maxDigits = (int) ((DBL_MAX_EXP * log((double) FLT_RADIX) |
---|
2206 | + 0.5 * log(10.)) / log(10.)); |
---|
2207 | minDigits = (int) floor((DBL_MIN_EXP - DBL_MANT_DIG) |
---|
2208 | * log((double) FLT_RADIX) / log(10.)); |
---|
2209 | mantDIGIT = (mantBits + DIGIT_BIT-1) / DIGIT_BIT; |
---|
2210 | log10_DIGIT_MAX = (int) floor(DIGIT_BIT * log(2.) / log(10.)); |
---|
2211 | |
---|
2212 | /* |
---|
2213 | * Nokia 770's software-emulated floating point is "middle endian": the |
---|
2214 | * bytes within a 32-bit word are little-endian (like the native |
---|
2215 | * integers), but the two words of a 'double' are presented most |
---|
2216 | * significant word first. |
---|
2217 | */ |
---|
2218 | |
---|
2219 | #ifdef IEEE_FLOATING_POINT |
---|
2220 | bitwhack.dv = 1.000000238418579; |
---|
2221 | /* 3ff0 0000 4000 0000 */ |
---|
2222 | if ((bitwhack.iv >> 32) == 0x3ff00000) { |
---|
2223 | n770_fp = 0; |
---|
2224 | } else if ((bitwhack.iv & 0xffffffff) == 0x3ff00000) { |
---|
2225 | n770_fp = 1; |
---|
2226 | } else { |
---|
2227 | Tcl_Panic("unknown floating point word order on this machine"); |
---|
2228 | } |
---|
2229 | #endif |
---|
2230 | } |
---|
2231 | |
---|
2232 | /* |
---|
2233 | *---------------------------------------------------------------------- |
---|
2234 | * |
---|
2235 | * TclFinalizeDoubleConversion -- |
---|
2236 | * |
---|
2237 | * Cleans up this file on exit. |
---|
2238 | * |
---|
2239 | * Results: |
---|
2240 | * None |
---|
2241 | * |
---|
2242 | * Side effects: |
---|
2243 | * Memory allocated by TclInitDoubleConversion is freed. |
---|
2244 | * |
---|
2245 | *---------------------------------------------------------------------- |
---|
2246 | */ |
---|
2247 | |
---|
2248 | void |
---|
2249 | TclFinalizeDoubleConversion(void) |
---|
2250 | { |
---|
2251 | int i; |
---|
2252 | |
---|
2253 | Tcl_Free((char *) pow10_wide); |
---|
2254 | for (i=0; i<9; ++i) { |
---|
2255 | mp_clear(pow5 + i); |
---|
2256 | } |
---|
2257 | } |
---|
2258 | |
---|
2259 | /* |
---|
2260 | *---------------------------------------------------------------------- |
---|
2261 | * |
---|
2262 | * Tcl_InitBignumFromDouble -- |
---|
2263 | * |
---|
2264 | * Extracts the integer part of a double and converts it to an arbitrary |
---|
2265 | * precision integer. |
---|
2266 | * |
---|
2267 | * Results: |
---|
2268 | * None. |
---|
2269 | * |
---|
2270 | * Side effects: |
---|
2271 | * Initializes the bignum supplied, and stores the converted number in |
---|
2272 | * it. |
---|
2273 | * |
---|
2274 | *---------------------------------------------------------------------- |
---|
2275 | */ |
---|
2276 | |
---|
2277 | int |
---|
2278 | Tcl_InitBignumFromDouble( |
---|
2279 | Tcl_Interp *interp, /* For error message */ |
---|
2280 | double d, /* Number to convert */ |
---|
2281 | mp_int *b) /* Place to store the result */ |
---|
2282 | { |
---|
2283 | double fract; |
---|
2284 | int expt; |
---|
2285 | |
---|
2286 | /* |
---|
2287 | * Infinite values can't convert to bignum. |
---|
2288 | */ |
---|
2289 | |
---|
2290 | if (TclIsInfinite(d)) { |
---|
2291 | if (interp != NULL) { |
---|
2292 | const char *s = "integer value too large to represent"; |
---|
2293 | |
---|
2294 | Tcl_SetObjResult(interp, Tcl_NewStringObj(s, -1)); |
---|
2295 | Tcl_SetErrorCode(interp, "ARITH", "IOVERFLOW", s, NULL); |
---|
2296 | } |
---|
2297 | return TCL_ERROR; |
---|
2298 | } |
---|
2299 | |
---|
2300 | fract = frexp(d,&expt); |
---|
2301 | if (expt <= 0) { |
---|
2302 | mp_init(b); |
---|
2303 | mp_zero(b); |
---|
2304 | } else { |
---|
2305 | Tcl_WideInt w = (Tcl_WideInt) ldexp(fract, mantBits); |
---|
2306 | int shift = expt - mantBits; |
---|
2307 | |
---|
2308 | TclBNInitBignumFromWideInt(b, w); |
---|
2309 | if (shift < 0) { |
---|
2310 | mp_div_2d(b, -shift, b, NULL); |
---|
2311 | } else if (shift > 0) { |
---|
2312 | mp_mul_2d(b, shift, b); |
---|
2313 | } |
---|
2314 | } |
---|
2315 | return TCL_OK; |
---|
2316 | } |
---|
2317 | |
---|
2318 | /* |
---|
2319 | *---------------------------------------------------------------------- |
---|
2320 | * |
---|
2321 | * TclBignumToDouble -- |
---|
2322 | * |
---|
2323 | * Convert an arbitrary-precision integer to a native floating point |
---|
2324 | * number. |
---|
2325 | * |
---|
2326 | * Results: |
---|
2327 | * Returns the converted number. Sets errno to ERANGE if the number is |
---|
2328 | * too large to convert. |
---|
2329 | * |
---|
2330 | *---------------------------------------------------------------------- |
---|
2331 | */ |
---|
2332 | |
---|
2333 | double |
---|
2334 | TclBignumToDouble( |
---|
2335 | mp_int *a) /* Integer to convert. */ |
---|
2336 | { |
---|
2337 | mp_int b; |
---|
2338 | int bits, shift, i; |
---|
2339 | double r; |
---|
2340 | |
---|
2341 | /* |
---|
2342 | * Determine how many bits we need, and extract that many from the input. |
---|
2343 | * Round to nearest unit in the last place. |
---|
2344 | */ |
---|
2345 | |
---|
2346 | bits = mp_count_bits(a); |
---|
2347 | if (bits > DBL_MAX_EXP*log2FLT_RADIX) { |
---|
2348 | errno = ERANGE; |
---|
2349 | if (a->sign == MP_ZPOS) { |
---|
2350 | return HUGE_VAL; |
---|
2351 | } else { |
---|
2352 | return -HUGE_VAL; |
---|
2353 | } |
---|
2354 | } |
---|
2355 | shift = mantBits + 1 - bits; |
---|
2356 | mp_init(&b); |
---|
2357 | if (shift > 0) { |
---|
2358 | mp_mul_2d(a, shift, &b); |
---|
2359 | } else if (shift < 0) { |
---|
2360 | mp_div_2d(a, -shift, &b, NULL); |
---|
2361 | } else { |
---|
2362 | mp_copy(a, &b); |
---|
2363 | } |
---|
2364 | mp_add_d(&b, 1, &b); |
---|
2365 | mp_div_2d(&b, 1, &b, NULL); |
---|
2366 | |
---|
2367 | /* |
---|
2368 | * Accumulate the result, one mp_digit at a time. |
---|
2369 | */ |
---|
2370 | |
---|
2371 | r = 0.0; |
---|
2372 | for (i=b.used-1 ; i>=0 ; --i) { |
---|
2373 | r = ldexp(r, DIGIT_BIT) + b.dp[i]; |
---|
2374 | } |
---|
2375 | mp_clear(&b); |
---|
2376 | |
---|
2377 | /* |
---|
2378 | * Scale the result to the correct number of bits. |
---|
2379 | */ |
---|
2380 | |
---|
2381 | r = ldexp(r, bits - mantBits); |
---|
2382 | |
---|
2383 | /* |
---|
2384 | * Return the result with the appropriate sign. |
---|
2385 | */ |
---|
2386 | |
---|
2387 | if (a->sign == MP_ZPOS) { |
---|
2388 | return r; |
---|
2389 | } else { |
---|
2390 | return -r; |
---|
2391 | } |
---|
2392 | } |
---|
2393 | |
---|
2394 | double |
---|
2395 | TclCeil( |
---|
2396 | mp_int *a) /* Integer to convert. */ |
---|
2397 | { |
---|
2398 | double r = 0.0; |
---|
2399 | mp_int b; |
---|
2400 | |
---|
2401 | mp_init(&b); |
---|
2402 | if (mp_cmp_d(a, 0) == MP_LT) { |
---|
2403 | mp_neg(a, &b); |
---|
2404 | r = -TclFloor(&b); |
---|
2405 | } else { |
---|
2406 | int bits = mp_count_bits(a); |
---|
2407 | |
---|
2408 | if (bits > DBL_MAX_EXP*log2FLT_RADIX) { |
---|
2409 | r = HUGE_VAL; |
---|
2410 | } else { |
---|
2411 | int i, exact = 1, shift = mantBits - bits; |
---|
2412 | |
---|
2413 | if (shift > 0) { |
---|
2414 | mp_mul_2d(a, shift, &b); |
---|
2415 | } else if (shift < 0) { |
---|
2416 | mp_int d; |
---|
2417 | mp_init(&d); |
---|
2418 | mp_div_2d(a, -shift, &b, &d); |
---|
2419 | exact = mp_iszero(&d); |
---|
2420 | mp_clear(&d); |
---|
2421 | } else { |
---|
2422 | mp_copy(a, &b); |
---|
2423 | } |
---|
2424 | if (!exact) { |
---|
2425 | mp_add_d(&b, 1, &b); |
---|
2426 | } |
---|
2427 | for (i=b.used-1 ; i>=0 ; --i) { |
---|
2428 | r = ldexp(r, DIGIT_BIT) + b.dp[i]; |
---|
2429 | } |
---|
2430 | r = ldexp(r, bits - mantBits); |
---|
2431 | } |
---|
2432 | } |
---|
2433 | mp_clear(&b); |
---|
2434 | return r; |
---|
2435 | } |
---|
2436 | |
---|
2437 | double |
---|
2438 | TclFloor( |
---|
2439 | mp_int *a) /* Integer to convert. */ |
---|
2440 | { |
---|
2441 | double r = 0.0; |
---|
2442 | mp_int b; |
---|
2443 | |
---|
2444 | mp_init(&b); |
---|
2445 | if (mp_cmp_d(a, 0) == MP_LT) { |
---|
2446 | mp_neg(a, &b); |
---|
2447 | r = -TclCeil(&b); |
---|
2448 | } else { |
---|
2449 | int bits = mp_count_bits(a); |
---|
2450 | |
---|
2451 | if (bits > DBL_MAX_EXP*log2FLT_RADIX) { |
---|
2452 | r = DBL_MAX; |
---|
2453 | } else { |
---|
2454 | int i, shift = mantBits - bits; |
---|
2455 | |
---|
2456 | if (shift > 0) { |
---|
2457 | mp_mul_2d(a, shift, &b); |
---|
2458 | } else if (shift < 0) { |
---|
2459 | mp_div_2d(a, -shift, &b, NULL); |
---|
2460 | } else { |
---|
2461 | mp_copy(a, &b); |
---|
2462 | } |
---|
2463 | for (i=b.used-1 ; i>=0 ; --i) { |
---|
2464 | r = ldexp(r, DIGIT_BIT) + b.dp[i]; |
---|
2465 | } |
---|
2466 | r = ldexp(r, bits - mantBits); |
---|
2467 | } |
---|
2468 | } |
---|
2469 | mp_clear(&b); |
---|
2470 | return r; |
---|
2471 | } |
---|
2472 | |
---|
2473 | /* |
---|
2474 | *---------------------------------------------------------------------- |
---|
2475 | * |
---|
2476 | * BignumToBiasedFrExp -- |
---|
2477 | * |
---|
2478 | * Convert an arbitrary-precision integer to a native floating point |
---|
2479 | * number in the range [0.5,1) times a power of two. NOTE: Intentionally |
---|
2480 | * converts to a number that's a few ulp too small, so that |
---|
2481 | * RefineApproximation will not overflow near the high end of the |
---|
2482 | * machine's arithmetic range. |
---|
2483 | * |
---|
2484 | * Results: |
---|
2485 | * Returns the converted number. |
---|
2486 | * |
---|
2487 | * Side effects: |
---|
2488 | * Stores the exponent of two in 'machexp'. |
---|
2489 | * |
---|
2490 | *---------------------------------------------------------------------- |
---|
2491 | */ |
---|
2492 | |
---|
2493 | static double |
---|
2494 | BignumToBiasedFrExp( |
---|
2495 | mp_int *a, /* Integer to convert */ |
---|
2496 | int *machexp) /* Power of two */ |
---|
2497 | { |
---|
2498 | mp_int b; |
---|
2499 | int bits; |
---|
2500 | int shift; |
---|
2501 | int i; |
---|
2502 | double r; |
---|
2503 | |
---|
2504 | /* |
---|
2505 | * Determine how many bits we need, and extract that many from the input. |
---|
2506 | * Round to nearest unit in the last place. |
---|
2507 | */ |
---|
2508 | |
---|
2509 | bits = mp_count_bits(a); |
---|
2510 | shift = mantBits - 2 - bits; |
---|
2511 | mp_init(&b); |
---|
2512 | if (shift > 0) { |
---|
2513 | mp_mul_2d(a, shift, &b); |
---|
2514 | } else if (shift < 0) { |
---|
2515 | mp_div_2d(a, -shift, &b, NULL); |
---|
2516 | } else { |
---|
2517 | mp_copy(a, &b); |
---|
2518 | } |
---|
2519 | |
---|
2520 | /* |
---|
2521 | * Accumulate the result, one mp_digit at a time. |
---|
2522 | */ |
---|
2523 | |
---|
2524 | r = 0.0; |
---|
2525 | for (i=b.used-1; i>=0; --i) { |
---|
2526 | r = ldexp(r, DIGIT_BIT) + b.dp[i]; |
---|
2527 | } |
---|
2528 | mp_clear(&b); |
---|
2529 | |
---|
2530 | /* |
---|
2531 | * Return the result with the appropriate sign. |
---|
2532 | */ |
---|
2533 | |
---|
2534 | *machexp = bits - mantBits + 2; |
---|
2535 | return ((a->sign == MP_ZPOS) ? r : -r); |
---|
2536 | } |
---|
2537 | |
---|
2538 | /* |
---|
2539 | *---------------------------------------------------------------------- |
---|
2540 | * |
---|
2541 | * Pow10TimesFrExp -- |
---|
2542 | * |
---|
2543 | * Multiply a power of ten by a number expressed as fraction and |
---|
2544 | * exponent. |
---|
2545 | * |
---|
2546 | * Results: |
---|
2547 | * Returns the significand of the result. |
---|
2548 | * |
---|
2549 | * Side effects: |
---|
2550 | * Overwrites the 'machexp' parameter with the exponent of the result. |
---|
2551 | * |
---|
2552 | * Assumes that 'exponent' is such that 10**exponent would be a double, even |
---|
2553 | * though 'fraction*10**(machexp+exponent)' might overflow. |
---|
2554 | * |
---|
2555 | *---------------------------------------------------------------------- |
---|
2556 | */ |
---|
2557 | |
---|
2558 | static double |
---|
2559 | Pow10TimesFrExp( |
---|
2560 | int exponent, /* Power of 10 to multiply by */ |
---|
2561 | double fraction, /* Significand of multiplicand */ |
---|
2562 | int *machexp) /* On input, exponent of multiplicand. On |
---|
2563 | * output, exponent of result. */ |
---|
2564 | { |
---|
2565 | int i, j; |
---|
2566 | int expt = *machexp; |
---|
2567 | double retval = fraction; |
---|
2568 | |
---|
2569 | if (exponent > 0) { |
---|
2570 | /* |
---|
2571 | * Multiply by 10**exponent |
---|
2572 | */ |
---|
2573 | |
---|
2574 | retval = frexp(retval * pow10vals[exponent&0xf], &j); |
---|
2575 | expt += j; |
---|
2576 | for (i=4; i<9; ++i) { |
---|
2577 | if (exponent & (1<<i)) { |
---|
2578 | retval = frexp(retval * pow_10_2_n[i], &j); |
---|
2579 | expt += j; |
---|
2580 | } |
---|
2581 | } |
---|
2582 | } else if (exponent < 0) { |
---|
2583 | /* |
---|
2584 | * Divide by 10**-exponent |
---|
2585 | */ |
---|
2586 | |
---|
2587 | retval = frexp(retval / pow10vals[(-exponent) & 0xf], &j); |
---|
2588 | expt += j; |
---|
2589 | for (i=4; i<9; ++i) { |
---|
2590 | if ((-exponent) & (1<<i)) { |
---|
2591 | retval = frexp(retval / pow_10_2_n[i], &j); |
---|
2592 | expt += j; |
---|
2593 | } |
---|
2594 | } |
---|
2595 | } |
---|
2596 | |
---|
2597 | *machexp = expt; |
---|
2598 | return retval; |
---|
2599 | } |
---|
2600 | |
---|
2601 | /* |
---|
2602 | *---------------------------------------------------------------------- |
---|
2603 | * |
---|
2604 | * SafeLdExp -- |
---|
2605 | * |
---|
2606 | * Do an 'ldexp' operation, but handle denormals gracefully. |
---|
2607 | * |
---|
2608 | * Results: |
---|
2609 | * Returns the appropriately scaled value. |
---|
2610 | * |
---|
2611 | * On some platforms, 'ldexp' fails when presented with a number too |
---|
2612 | * small to represent as a normalized double. This routine does 'ldexp' |
---|
2613 | * in two steps for those numbers, to return correctly denormalized |
---|
2614 | * values. |
---|
2615 | * |
---|
2616 | *---------------------------------------------------------------------- |
---|
2617 | */ |
---|
2618 | |
---|
2619 | static double |
---|
2620 | SafeLdExp( |
---|
2621 | double fract, |
---|
2622 | int expt) |
---|
2623 | { |
---|
2624 | int minexpt = DBL_MIN_EXP * log2FLT_RADIX; |
---|
2625 | volatile double a, b, retval; |
---|
2626 | |
---|
2627 | if (expt < minexpt) { |
---|
2628 | a = ldexp(fract, expt - mantBits - minexpt); |
---|
2629 | b = ldexp(1.0, mantBits + minexpt); |
---|
2630 | retval = a * b; |
---|
2631 | } else { |
---|
2632 | retval = ldexp(fract, expt); |
---|
2633 | } |
---|
2634 | return retval; |
---|
2635 | } |
---|
2636 | |
---|
2637 | /* |
---|
2638 | *---------------------------------------------------------------------- |
---|
2639 | * |
---|
2640 | * TclFormatNaN -- |
---|
2641 | * |
---|
2642 | * Makes the string representation of a "Not a Number" |
---|
2643 | * |
---|
2644 | * Results: |
---|
2645 | * None. |
---|
2646 | * |
---|
2647 | * Side effects: |
---|
2648 | * Stores the string representation in the supplied buffer, which must be |
---|
2649 | * at least TCL_DOUBLE_SPACE characters. |
---|
2650 | * |
---|
2651 | *---------------------------------------------------------------------- |
---|
2652 | */ |
---|
2653 | |
---|
2654 | void |
---|
2655 | TclFormatNaN( |
---|
2656 | double value, /* The Not-a-Number to format. */ |
---|
2657 | char *buffer) /* String representation. */ |
---|
2658 | { |
---|
2659 | #ifndef IEEE_FLOATING_POINT |
---|
2660 | strcpy(buffer, "NaN"); |
---|
2661 | return; |
---|
2662 | #else |
---|
2663 | union { |
---|
2664 | double dv; |
---|
2665 | Tcl_WideUInt iv; |
---|
2666 | } bitwhack; |
---|
2667 | |
---|
2668 | bitwhack.dv = value; |
---|
2669 | if (n770_fp) { |
---|
2670 | bitwhack.iv = Nokia770Twiddle(bitwhack.iv); |
---|
2671 | } |
---|
2672 | if (bitwhack.iv & ((Tcl_WideUInt) 1 << 63)) { |
---|
2673 | bitwhack.iv &= ~ ((Tcl_WideUInt) 1 << 63); |
---|
2674 | *buffer++ = '-'; |
---|
2675 | } |
---|
2676 | *buffer++ = 'N'; |
---|
2677 | *buffer++ = 'a'; |
---|
2678 | *buffer++ = 'N'; |
---|
2679 | bitwhack.iv &= (((Tcl_WideUInt) 1) << 51) - 1; |
---|
2680 | if (bitwhack.iv != 0) { |
---|
2681 | sprintf(buffer, "(%" TCL_LL_MODIFIER "x)", bitwhack.iv); |
---|
2682 | } else { |
---|
2683 | *buffer = '\0'; |
---|
2684 | } |
---|
2685 | #endif /* IEEE_FLOATING_POINT */ |
---|
2686 | } |
---|
2687 | |
---|
2688 | /* |
---|
2689 | *---------------------------------------------------------------------- |
---|
2690 | * |
---|
2691 | * Nokia770Twiddle -- |
---|
2692 | * |
---|
2693 | * Transpose the two words of a number for Nokia 770 floating |
---|
2694 | * point handling. |
---|
2695 | * |
---|
2696 | *---------------------------------------------------------------------- |
---|
2697 | */ |
---|
2698 | |
---|
2699 | static Tcl_WideUInt |
---|
2700 | Nokia770Twiddle( |
---|
2701 | Tcl_WideUInt w) /* Number to transpose */ |
---|
2702 | { |
---|
2703 | return (((w >> 32) & 0xffffffff) | (w << 32)); |
---|
2704 | } |
---|
2705 | |
---|
2706 | /* |
---|
2707 | *---------------------------------------------------------------------- |
---|
2708 | * |
---|
2709 | * TclNokia770Doubles -- |
---|
2710 | * |
---|
2711 | * Transpose the two words of a number for Nokia 770 floating |
---|
2712 | * point handling. |
---|
2713 | * |
---|
2714 | *---------------------------------------------------------------------- |
---|
2715 | */ |
---|
2716 | |
---|
2717 | int |
---|
2718 | TclNokia770Doubles(void) |
---|
2719 | { |
---|
2720 | return n770_fp; |
---|
2721 | } |
---|
2722 | |
---|
2723 | /* |
---|
2724 | * Local Variables: |
---|
2725 | * mode: c |
---|
2726 | * c-basic-offset: 4 |
---|
2727 | * fill-column: 78 |
---|
2728 | * End: |
---|
2729 | */ |
---|