| 1 | /*! | 
|---|
| 2 |  * @file vector.h | 
|---|
| 3 |  * A basic 3D math framework | 
|---|
| 4 |  * | 
|---|
| 5 |  * Contains classes to handle vectors, lines, rotations and planes | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #ifndef _VECTOR_H | 
|---|
| 9 | #define _VECTOR_H | 
|---|
| 10 |  | 
|---|
| 11 | #include <math.h> | 
|---|
| 12 | #include "compiler.h" | 
|---|
| 13 | #include "abstract_model.h" | 
|---|
| 14 | //! PI the circle-constant | 
|---|
| 15 | #define PI 3.14159265359f | 
|---|
| 16 |  | 
|---|
| 17 | //! 3D Vector | 
|---|
| 18 | /** | 
|---|
| 19 |         Class to handle 3D Vectors | 
|---|
| 20 | */ | 
|---|
| 21 | class Vector { | 
|---|
| 22 |  | 
|---|
| 23 |  | 
|---|
| 24 |  public: | 
|---|
| 25 |   Vector (float x, float y, float z) : x(x), y(y), z(z) {}  //!< assignment constructor | 
|---|
| 26 |   Vector () : x(0), y(0), z(0) {} | 
|---|
| 27 |   ~Vector () {} | 
|---|
| 28 |  | 
|---|
| 29 |   /** @param v: the Vecor to compare with this one @returns true, if the Vecors are the same, false otherwise */ | 
|---|
| 30 |   inline bool operator== (const Vector& v) const { return (this->x==v.x&&this->y==v.y&&this->z==v.z)?true:false; }; | 
|---|
| 31 |   /** @param index The index of the "array" @returns the x/y/z coordinate */ | 
|---|
| 32 |   inline float operator[] (float index) const {if( index == 0) return this->x; if( index == 1) return this->y; if( index == 2) return this->z; } | 
|---|
| 33 |   /** @param v The vector to add @returns the addition between two vectors (this + v) */ | 
|---|
| 34 |   inline Vector operator+ (const Vector& v) const { return Vector(x + v.x, y + v.y, z + v.z); }; | 
|---|
| 35 |   /** @param v The vector to add @returns the addition between two vectors (this + v) */ | 
|---|
| 36 |   inline Vector operator+ (const sVec3D& v) const { return Vector(x + v[0], y + v[1], z + v[2]); }; | 
|---|
| 37 |   /** @param v The vector to add  @returns the addition between two vectors (this += v) */ | 
|---|
| 38 |   inline const Vector& operator+= (const Vector& v) { this->x += v.x; this->y += v.y; this->z += v.z; return *this; }; | 
|---|
| 39 |   /** @param v The vector to substract  @returns the substraction between two vectors (this - v) */ | 
|---|
| 40 |   inline const Vector& operator+= (const sVec3D& v) { this->x += v[0]; this->y += v[1]; this->z += v[2]; return *this; }; | 
|---|
| 41 |   /** @param v The vector to substract  @returns the substraction between two vectors (this - v) */ | 
|---|
| 42 |   inline Vector operator- (const Vector& v) const { return Vector(x - v.x, y - v.y, z - v.z); } | 
|---|
| 43 |   /** @param v The vector to substract  @returns the substraction between two vectors (this - v) */ | 
|---|
| 44 |   inline Vector operator- (const sVec3D& v) const { return Vector(x - v[0], y - v[1], z - v[2]); } | 
|---|
| 45 |   /** @param v The vector to substract  @returns the substraction between two vectors (this -= v) */ | 
|---|
| 46 |   inline const Vector& operator-= (const Vector& v) { this->x -= v.x; this->y -= v.y; this->z -= v.z; return *this; }; | 
|---|
| 47 |   /** @param v The vector to substract  @returns the substraction between two vectors (this -= v) */ | 
|---|
| 48 |   inline const Vector& operator-= (const sVec3D& v) { this->x -= v[0]; this->y -= v[1]; this->z -= v[2]; return *this; }; | 
|---|
| 49 |   /** @param v the second vector  @returns The dotProduct between two vector (this (dot) v) */ | 
|---|
| 50 |   inline float operator* (const Vector& v) const { return x * v.x + y * v.y + z * v.z; }; | 
|---|
| 51 |   /** @todo strange */ | 
|---|
| 52 |   inline const Vector& operator*= (const Vector& v) { this->x *= v.x; this->y *= v.y; this->z *= v.z; return *this; }; | 
|---|
| 53 |   /** @param f a factor to multiply the vector with @returns the vector multiplied by f (this * f) */ | 
|---|
| 54 |   inline Vector operator* (float f) const { return Vector(x * f, y * f, z * f); }; | 
|---|
| 55 |   /** @param f a factor to multiply the vector with @returns the vector multiplied by f (this *= f) */ | 
|---|
| 56 |   inline const Vector& operator*= (float f) { this->x *= f; this->y *= f; this->z *= f; return *this; }; | 
|---|
| 57 |   /** @param f a factor to divide the vector with @returns the vector divided by f (this / f) */ | 
|---|
| 58 |   inline Vector operator/ (float f) const { return (unlikely(f == 0.0))?Vector(0,0,0):Vector(this->x / f, this->y / f, this->z / f); }; | 
|---|
| 59 |   /** @param f a factor to divide the vector with @returns the vector divided by f (this /= f) */ | 
|---|
| 60 |   inline const Vector& operator/= (float f) {if (unlikely(f == 0.0)) {this->x=0;this->y=0;this->z=0;} else {this->x /= f; this->y /= f; this->z /= f;} return *this; }; | 
|---|
| 61 |   /**  copy constructor @todo (i do not know it this is faster) @param v the vector to assign to this vector. @returns the vector v */ | 
|---|
| 62 |   inline const Vector& operator= (const Vector& v) { this->x = v.x; this->y = v.y; this->z = v.z; return *this; }; | 
|---|
| 63 |   /** copy constructor* @param v the sVec3D to assign to this vector. @returns the vector v */ | 
|---|
| 64 |   inline const Vector& operator= (const sVec3D& v) { this->x = v[0]; this->y = v[1]; this->z = v[2]; } | 
|---|
| 65 |   /** @param v: the other vector \return the dot product of the vectors */ | 
|---|
| 66 |   float dot (const Vector& v) const { return x*v.x+y*v.y+z*v.z; }; | 
|---|
| 67 |   /** @param v: the corss-product partner @returns the cross-product between this and v (this (x) v) */ | 
|---|
| 68 |   inline Vector cross (const Vector& v) const { return Vector(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x ); } | 
|---|
| 69 |   /** scales the this vector with v* @param v the vector to scale this with */ | 
|---|
| 70 |   void scale(const Vector& v) {   x *= v.x;  y *= v.y; z *= v.z; }; | 
|---|
| 71 |   /** @returns the length of the vector */ | 
|---|
| 72 |   inline float len() const { return sqrt (x*x+y*y+z*z); } | 
|---|
| 73 |   /** normalizes the vector */ | 
|---|
| 74 |   inline void normalize() { float l = len(); if( unlikely(l == 0.0))return; this->x=this->x/l; this->y=this->y/l; this->z=this->z/l; }; | 
|---|
| 75 |   Vector getNormalized() const; | 
|---|
| 76 |   Vector abs(); | 
|---|
| 77 |  | 
|---|
| 78 |   void debug() const; | 
|---|
| 79 |  | 
|---|
| 80 |  public: | 
|---|
| 81 |   float    x;     //!< The x Coordinate of the Vector. | 
|---|
| 82 |   float    y;     //!< The y Coordinate of the Vector. | 
|---|
| 83 |   float    z;     //!< The z Coordinate of the Vector. | 
|---|
| 84 | }; | 
|---|
| 85 |  | 
|---|
| 86 | /** | 
|---|
| 87 |  *  calculate the angle between two vectors in radiances | 
|---|
| 88 |  * @param v1: a vector | 
|---|
| 89 |  * @param v2: another vector | 
|---|
| 90 |  * @return the angle between the vectors in radians | 
|---|
| 91 | */ | 
|---|
| 92 | inline float angleDeg (const Vector& v1, const Vector& v2) { return acos( v1 * v2 / (v1.len() * v2.len())); }; | 
|---|
| 93 | /** | 
|---|
| 94 |  *  calculate the angle between two vectors in degrees | 
|---|
| 95 |  * @param v1: a vector | 
|---|
| 96 |  * @param v2: another vector | 
|---|
| 97 |  * @return the angle between the vectors in degrees | 
|---|
| 98 | */ | 
|---|
| 99 | inline float angleRad (const Vector& v1, const Vector& v2) { return acos( v1 * v2 / (v1.len() * v2.len())) * 180/M_PI; }; | 
|---|
| 100 |  | 
|---|
| 101 | /** an easy way to create a Random Vector @param sideLength the length of the Vector (x not sqrt(x^2...)) */ | 
|---|
| 102 | #define VECTOR_RAND(sideLength)  (Vector((float)rand()/RAND_MAX -.5, (float)rand()/RAND_MAX -.5, (float)rand()/RAND_MAX -.5) * sideLength) | 
|---|
| 103 |  | 
|---|
| 104 |  | 
|---|
| 105 | //! Quaternion | 
|---|
| 106 | /** | 
|---|
| 107 |    Class to handle 3-dimensional rotation efficiently | 
|---|
| 108 | */ | 
|---|
| 109 | class Quaternion | 
|---|
| 110 | { | 
|---|
| 111 |  public: | 
|---|
| 112 |   /** creates a Default quaternion (multiplicational identity Quaternion)*/ | 
|---|
| 113 |   inline Quaternion () { w = 1; v = Vector(0,0,0); } | 
|---|
| 114 |   /** creates a Quaternion looking into the direction v @param v: the direction @param f: the value */ | 
|---|
| 115 |   inline Quaternion (const Vector& v, float f) { this->w = f; this->v = v; } | 
|---|
| 116 |   Quaternion (float m[4][4]); | 
|---|
| 117 |   /** turns a rotation along an axis into a Quaternion @param angle: the amount of radians to rotate @param axis: the axis to rotate around */ | 
|---|
| 118 |   inline Quaternion (float angle, const Vector& axis) { w = cos(angle/2); v = axis * sin(angle/2); } | 
|---|
| 119 |   Quaternion (const Vector& dir, const Vector& up); | 
|---|
| 120 |   Quaternion (float roll, float pitch, float yaw); | 
|---|
| 121 |  | 
|---|
| 122 |   /** @param q: the Quaternion to compare with this one. @returns true if the Quaternions are the same, false otherwise */ | 
|---|
| 123 |   inline bool operator== (const Quaternion& q) const { return (unlikely(this->v==q.v&&this->w==q.w))?true:false; }; | 
|---|
| 124 |   /** @param f: a real value @return a Quaternion containing the quotient */ | 
|---|
| 125 |   inline Quaternion operator/ (const float& f) const { return (unlikely(f==0.0)) ? Quaternion() : Quaternion(this->v/f, this->w/f); }; | 
|---|
| 126 |   /** @param f: the value to divide by @returns the quaternion devided by f (this /= f) */ | 
|---|
| 127 |   inline const Quaternion& operator/= (const float& f) {*this = *this / f; return *this;} | 
|---|
| 128 |   /** @param f: a real value @return a Quaternion containing the product */ | 
|---|
| 129 |   inline Quaternion operator* (const float& f) const { return Quaternion(this->v*f, this->w*f); }; | 
|---|
| 130 |   /** @param f: the value to multiply by @returns the quaternion multiplied by f (this *= f) */ | 
|---|
| 131 |   inline const Quaternion& operator*= (const float& f) {*this = *this * f; return *this;} | 
|---|
| 132 |   /** @param q: another Quaternion to rotate this by @return a quaternion that represents the first one rotated by the second one (WARUNING: this operation is not commutative! e.g. (A*B) != (B*A)) */ | 
|---|
| 133 |   Quaternion operator* (const Quaternion& q) const { return Quaternion(Vector(this->w*q.v.x + this->v.x*q.w + this->v.y*q.v.z - this->v.z*q.v.y, | 
|---|
| 134 |                                                                          this->w*q.v.y + this->v.y*q.w + this->v.z*q.v.x - this->v.x*q.v.z, | 
|---|
| 135 |                                                                          this->w*q.v.z + this->v.z*q.w + this->v.x*q.v.y - this->v.y*q.v.x), | 
|---|
| 136 |                                                                          this->w*q.w - this->v.x*q.v.x - this->v.y*q.v.y - this->v.z*q.v.z); }; | 
|---|
| 137 |   /** @param q: the Quaternion to multiply by @returns the quaternion multiplied by q (this *= q) */ | 
|---|
| 138 |   inline const Quaternion& operator*= (const Quaternion& q) {*this = *this * q; return *this; }; | 
|---|
| 139 |   /** @param q the Quaternion by which to devide @returns the division from this by q (this / q) */ | 
|---|
| 140 |   inline Quaternion operator/ (const Quaternion& q) const { return *this * q.inverse(); }; | 
|---|
| 141 |   /** @param q the Quaternion by which to devide @returns the division from this by q (this /= q) */ | 
|---|
| 142 |   inline const Quaternion& operator/= (const Quaternion& q) { *this = *this * q.inverse(); return *this; }; | 
|---|
| 143 |   /** @param q the Quaternion to add to this @returns the quaternion added with q (this + q) */ | 
|---|
| 144 |   inline Quaternion operator+ (const Quaternion& q) const { return Quaternion(q.v + v, q.w + w); }; | 
|---|
| 145 |   /** @param q the Quaternion to add to this @returns the quaternion added with q (this += q) */ | 
|---|
| 146 |   inline const Quaternion& operator+= (const Quaternion& q) { this->v += q.v; this->w += q.w; return *this; }; | 
|---|
| 147 |   /** @param q the Quaternion to substrace from this @returns the quaternion substracted by q (this - q) */ | 
|---|
| 148 |   inline Quaternion operator- (const Quaternion& q) const { return Quaternion(q.v - v, q.w - w); } | 
|---|
| 149 |   /** @param q the Quaternion to substrace from this @returns the quaternion substracted by q (this -= q) */ | 
|---|
| 150 |   inline const Quaternion& operator-= (const Quaternion& q) { this->v -= q.v; this->w -= q.w; return *this; }; | 
|---|
| 151 |   /** copy constructor @param q: the Quaternion to set this to. @returns the Quaternion q (or this) */ | 
|---|
| 152 |   inline Quaternion operator= (const Quaternion& q) {this->v = q.v; this->w = q.w; return *this;} | 
|---|
| 153 |   /** conjugates this Quaternion @returns the conjugate */ | 
|---|
| 154 |   inline Quaternion conjugate () const { return Quaternion(Vector(-v.x, -v.y, -v.z), this->w); }; | 
|---|
| 155 |   /** @returns the norm of The Quaternion */ | 
|---|
| 156 |   inline float norm () const { return sqrt(w*w + v.x*v.x + v.y*v.y + v.z*v.z); }; | 
|---|
| 157 |   /** @returns the inverted Quaterntion of this */ | 
|---|
| 158 |   inline Quaternion inverse () const { return conjugate() / (w*w + v.x*v.x + v.y*v.y + v.z*v.z); }; | 
|---|
| 159 |   /** @param v: the Vector  @return a new Vector representing v rotated by the Quaternion */ | 
|---|
| 160 |   inline Vector apply (const Vector& v) const { return (*this * Quaternion(v, 0) * conjugate()).v; }; | 
|---|
| 161 |   void matrix (float m[4][4]) const; | 
|---|
| 162 |   /** @returns the normalized Quaternion (|this|) */ | 
|---|
| 163 |   inline Quaternion getNormalized() const { float n = this->norm(); return Quaternion(this->v/n, this->w/n); }; | 
|---|
| 164 |   /** normalizes the current Quaternion */ | 
|---|
| 165 |   inline void normalize() { float n = this->norm(); this->v /= n; this->w/=n; }; | 
|---|
| 166 |  | 
|---|
| 167 |   /** @returns the rotational axis of this Quaternion */ | 
|---|
| 168 |   inline Vector getSpacialAxis() const { return this->v / sin(acos(w));/*sqrt(v.x*v.x + v.y*v.y + v.z+v.z);*/ }; | 
|---|
| 169 |   /** @returns the rotational angle of this Quaternion around getSpacialAxis()  !! IN DEGREE !! */ | 
|---|
| 170 |   inline float getSpacialAxisAngle() const { return 360.0 / M_PI * acos(this->w); }; | 
|---|
| 171 |  | 
|---|
| 172 |   static Quaternion quatSlerp(const Quaternion& from, const Quaternion& to, float t); | 
|---|
| 173 |  | 
|---|
| 174 |   void debug(); | 
|---|
| 175 |   void debug2(); | 
|---|
| 176 |  | 
|---|
| 177 |  | 
|---|
| 178 |  public: | 
|---|
| 179 |   Vector    v;        //!< Imaginary Vector | 
|---|
| 180 |   float     w;        //!< Real part of the number | 
|---|
| 181 |  | 
|---|
| 182 | }; | 
|---|
| 183 |  | 
|---|
| 184 |  | 
|---|
| 185 |  | 
|---|
| 186 |  | 
|---|
| 187 | //! 3D rotation (OBSOLETE) | 
|---|
| 188 | /** | 
|---|
| 189 |   Class to handle 3-dimensional rotations. | 
|---|
| 190 |   Can create a rotation from several inputs, currently stores rotation using a 3x3 Matrix | 
|---|
| 191 | */ | 
|---|
| 192 | class Rotation { | 
|---|
| 193 |   public: | 
|---|
| 194 |  | 
|---|
| 195 |   float m[9]; //!< 3x3 Rotation Matrix | 
|---|
| 196 |  | 
|---|
| 197 |   Rotation ( const Vector& v); | 
|---|
| 198 |   Rotation ( const Vector& axis, float angle); | 
|---|
| 199 |   Rotation ( float pitch, float yaw, float roll); | 
|---|
| 200 |   Rotation (); | 
|---|
| 201 |   ~Rotation () {} | 
|---|
| 202 |  | 
|---|
| 203 |   Rotation operator* (const Rotation& r); | 
|---|
| 204 |  | 
|---|
| 205 |   void glmatrix (float* buffer); | 
|---|
| 206 | }; | 
|---|
| 207 |  | 
|---|
| 208 | //!< Apply a rotation to a vector | 
|---|
| 209 | Vector rotateVector( const Vector& v, const Rotation& r); | 
|---|
| 210 |  | 
|---|
| 211 | //! 3D line | 
|---|
| 212 | /** | 
|---|
| 213 |   Class to store Lines in 3-dimensional space | 
|---|
| 214 |  | 
|---|
| 215 |   Supports line-to-line distance measurements and rotation | 
|---|
| 216 | */ | 
|---|
| 217 | class Line | 
|---|
| 218 | { | 
|---|
| 219 |   public: | 
|---|
| 220 |  | 
|---|
| 221 |   Vector r;   //!< Offset | 
|---|
| 222 |   Vector a;   //!< Direction | 
|---|
| 223 |  | 
|---|
| 224 |   Line ( Vector r, Vector a) : r(r), a(a) {}  //!< assignment constructor | 
|---|
| 225 |   Line () : r(Vector(0,0,0)), a(Vector (1,1,1)) {} | 
|---|
| 226 |   ~Line () {} | 
|---|
| 227 |  | 
|---|
| 228 |   float distance (const Line& l) const; | 
|---|
| 229 |   float distancePoint (const Vector& v) const; | 
|---|
| 230 |   float distancePoint (const sVec3D& v) const; | 
|---|
| 231 |   Vector* footpoints (const Line& l) const; | 
|---|
| 232 |   float len () const; | 
|---|
| 233 |  | 
|---|
| 234 |   void rotate(const Rotation& rot); | 
|---|
| 235 | }; | 
|---|
| 236 |  | 
|---|
| 237 | //! 3D plane | 
|---|
| 238 | /** | 
|---|
| 239 |   Class to handle planes in 3-dimensional space | 
|---|
| 240 |  | 
|---|
| 241 |   Critical for polygon-based collision detection | 
|---|
| 242 | */ | 
|---|
| 243 | class Plane | 
|---|
| 244 | { | 
|---|
| 245 |   public: | 
|---|
| 246 |  | 
|---|
| 247 |   Vector n;   //!< Normal vector | 
|---|
| 248 |   float k;    //!< Offset constant | 
|---|
| 249 |  | 
|---|
| 250 |   Plane (Vector a, Vector b, Vector c); | 
|---|
| 251 |   Plane (Vector norm, Vector p); | 
|---|
| 252 |   Plane (Vector norm, sVec3D p); | 
|---|
| 253 |   Plane (Vector n, float k) : n(n), k(k) {} //!< assignment constructor | 
|---|
| 254 |   Plane () : n(Vector(1,1,1)), k(0) {} | 
|---|
| 255 |   ~Plane () {} | 
|---|
| 256 |  | 
|---|
| 257 |   Vector intersectLine (const Line& l) const; | 
|---|
| 258 |   float distancePoint (const Vector& p) const; | 
|---|
| 259 |   float distancePoint (const sVec3D& p) const; | 
|---|
| 260 |   float locatePoint (const Vector& p) const; | 
|---|
| 261 | }; | 
|---|
| 262 |  | 
|---|
| 263 |  | 
|---|
| 264 |  | 
|---|
| 265 | //! A class that represents a rectangle, this is needed for SpatialSeparation | 
|---|
| 266 | class Rectangle | 
|---|
| 267 | { | 
|---|
| 268 |  | 
|---|
| 269 |   public: | 
|---|
| 270 |     Rectangle() { this->center = Vector(); } | 
|---|
| 271 |     Rectangle(const Vector ¢er, float len) { this->center = Vector(center.x, center.y, center.z); this->axis[0] = len; this->axis[1] = len; } | 
|---|
| 272 |     virtual ~Rectangle() {} | 
|---|
| 273 |  | 
|---|
| 274 |     /** \brief sets the center of the rectangle to a defined vector @param center the new center */ | 
|---|
| 275 |    inline void setCenter(const Vector ¢er) { this->center = center;} | 
|---|
| 276 |     /** \brief sets the center of the rectangle to a defined vector @param x coord of the center @param y coord of the center @param z coord of the center */ | 
|---|
| 277 |    inline void setCenter(float x, float y, float z) { this->center.x = x; this->center.y = y; this->center.z = z; } | 
|---|
| 278 |    /** \brief returns the center of the rectangle to a defined vector @returns center the new center */ | 
|---|
| 279 |    inline const Vector& getCenter() const { return this->center; } | 
|---|
| 280 |  | 
|---|
| 281 |    /** \brief sets both axis of the rectangle to a defined vector @param unityLength the new center */ | 
|---|
| 282 |    inline void setAxis(float unityLength) { this->axis[0] = unityLength; this->axis[1] = unityLength; } | 
|---|
| 283 |    /** \brief sets both axis of the rectangle to a defined vector @param v1 the length of the x axis @param v2 the length of the z axis*/ | 
|---|
| 284 |    inline void setAxis(float v1, float v2) { this->axis[0] = v1; this->axis[1] = v2; } | 
|---|
| 285 |    /** \brief gets one axis length of the rectangle  @returns the length of the axis 0 */ | 
|---|
| 286 |    inline float getAxis() { return this-> axis[0]; } | 
|---|
| 287 |  | 
|---|
| 288 |   private: | 
|---|
| 289 |     Vector          center; | 
|---|
| 290 |     float           axis[2]; | 
|---|
| 291 | }; | 
|---|
| 292 |  | 
|---|
| 293 |  | 
|---|
| 294 | #endif /* _VECTOR_H */ | 
|---|
| 295 |  | 
|---|