[4578] | 1 | /* |
---|
[2043] | 2 | orxonox - the future of 3D-vertical-scrollers |
---|
| 3 | |
---|
| 4 | Copyright (C) 2004 orx |
---|
| 5 | |
---|
| 6 | This program is free software; you can redistribute it and/or modify |
---|
| 7 | it under the terms of the GNU General Public License as published by |
---|
| 8 | the Free Software Foundation; either version 2, or (at your option) |
---|
| 9 | any later version. |
---|
| 10 | |
---|
| 11 | ### File Specific: |
---|
[4578] | 12 | main-programmer: Christian Meyer |
---|
[2551] | 13 | co-programmer: Patrick Boenzli : Vector::scale() |
---|
| 14 | Vector::abs() |
---|
[4578] | 15 | |
---|
[2190] | 16 | Quaternion code borrowed from an Gamasutra article by Nick Bobick and Ken Shoemake |
---|
[5420] | 17 | |
---|
| 18 | 2005-06-02: Benjamin Grauer: speed up, and new Functionality to Vector (mostly inline now) |
---|
[2043] | 19 | */ |
---|
| 20 | |
---|
[3590] | 21 | #define DEBUG_SPECIAL_MODULE DEBUG_MODULE_MATH |
---|
[2043] | 22 | |
---|
[6616] | 23 | #include "quaternion.h" |
---|
[5662] | 24 | #ifdef DEBUG |
---|
[5672] | 25 | #include "debug.h" |
---|
[5662] | 26 | #else |
---|
[5672] | 27 | #include <stdio.h> |
---|
| 28 | #define PRINT(x) printf |
---|
[5662] | 29 | #endif |
---|
[2043] | 30 | |
---|
| 31 | using namespace std; |
---|
| 32 | |
---|
[4477] | 33 | ///////////////// |
---|
| 34 | /* QUATERNIONS */ |
---|
| 35 | ///////////////// |
---|
[3541] | 36 | /** |
---|
[7348] | 37 | * @brief calculates a lookAt rotation |
---|
[4836] | 38 | * @param dir: the direction you want to look |
---|
| 39 | * @param up: specify what direction up should be |
---|
[5004] | 40 | * |
---|
[7348] | 41 | * Mathematically this determines the rotation a (0,0,1)-Vector has to undergo to point |
---|
| 42 | * the same way as dir. If you want to use this with cameras, you'll have to reverse the |
---|
| 43 | * dir Vector (Vector(0,0,0) - your viewing direction) or you'll point the wrong way. You |
---|
| 44 | * can use this for meshes as well (then you do not have to reverse the vector), but keep |
---|
| 45 | * in mind that if you do that, the model's front has to point in +z direction, and left |
---|
| 46 | * and right should be -x or +x respectively or the mesh wont rotate correctly. |
---|
| 47 | * |
---|
[5005] | 48 | * @TODO !!! OPTIMIZE THIS !!! |
---|
[5420] | 49 | */ |
---|
[2190] | 50 | Quaternion::Quaternion (const Vector& dir, const Vector& up) |
---|
[2551] | 51 | { |
---|
[5004] | 52 | Vector z = dir.getNormalized(); |
---|
| 53 | Vector x = up.cross(z).getNormalized(); |
---|
[2190] | 54 | Vector y = z.cross(x); |
---|
[4578] | 55 | |
---|
[2190] | 56 | float m[4][4]; |
---|
| 57 | m[0][0] = x.x; |
---|
| 58 | m[0][1] = x.y; |
---|
| 59 | m[0][2] = x.z; |
---|
| 60 | m[0][3] = 0; |
---|
| 61 | m[1][0] = y.x; |
---|
| 62 | m[1][1] = y.y; |
---|
| 63 | m[1][2] = y.z; |
---|
| 64 | m[1][3] = 0; |
---|
| 65 | m[2][0] = z.x; |
---|
| 66 | m[2][1] = z.y; |
---|
| 67 | m[2][2] = z.z; |
---|
| 68 | m[2][3] = 0; |
---|
| 69 | m[3][0] = 0; |
---|
| 70 | m[3][1] = 0; |
---|
| 71 | m[3][2] = 0; |
---|
| 72 | m[3][3] = 1; |
---|
[4578] | 73 | |
---|
[2190] | 74 | *this = Quaternion (m); |
---|
| 75 | } |
---|
| 76 | |
---|
| 77 | /** |
---|
[7348] | 78 | * @brief calculates a rotation from euler angles |
---|
[4836] | 79 | * @param roll: the roll in radians |
---|
| 80 | * @param pitch: the pitch in radians |
---|
| 81 | * @param yaw: the yaw in radians |
---|
[5420] | 82 | */ |
---|
[2190] | 83 | Quaternion::Quaternion (float roll, float pitch, float yaw) |
---|
| 84 | { |
---|
[4477] | 85 | float cr, cp, cy, sr, sp, sy, cpcy, spsy; |
---|
[4578] | 86 | |
---|
[4477] | 87 | // calculate trig identities |
---|
| 88 | cr = cos(roll/2); |
---|
| 89 | cp = cos(pitch/2); |
---|
| 90 | cy = cos(yaw/2); |
---|
[4578] | 91 | |
---|
[4477] | 92 | sr = sin(roll/2); |
---|
| 93 | sp = sin(pitch/2); |
---|
| 94 | sy = sin(yaw/2); |
---|
[4578] | 95 | |
---|
[4477] | 96 | cpcy = cp * cy; |
---|
| 97 | spsy = sp * sy; |
---|
[4578] | 98 | |
---|
[4477] | 99 | w = cr * cpcy + sr * spsy; |
---|
| 100 | v.x = sr * cpcy - cr * spsy; |
---|
| 101 | v.y = cr * sp * cy + sr * cp * sy; |
---|
| 102 | v.z = cr * cp * sy - sr * sp * cy; |
---|
[2190] | 103 | } |
---|
| 104 | |
---|
| 105 | /** |
---|
[7348] | 106 | * @brief convert the Quaternion to a 4x4 rotational glMatrix |
---|
[4836] | 107 | * @param m: a buffer to store the Matrix in |
---|
[5420] | 108 | */ |
---|
[2190] | 109 | void Quaternion::matrix (float m[4][4]) const |
---|
| 110 | { |
---|
[4578] | 111 | float wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2; |
---|
| 112 | |
---|
[2551] | 113 | // calculate coefficients |
---|
| 114 | x2 = v.x + v.x; |
---|
[4578] | 115 | y2 = v.y + v.y; |
---|
[2551] | 116 | z2 = v.z + v.z; |
---|
| 117 | xx = v.x * x2; xy = v.x * y2; xz = v.x * z2; |
---|
| 118 | yy = v.y * y2; yz = v.y * z2; zz = v.z * z2; |
---|
| 119 | wx = w * x2; wy = w * y2; wz = w * z2; |
---|
[4578] | 120 | |
---|
[2551] | 121 | m[0][0] = 1.0 - (yy + zz); m[1][0] = xy - wz; |
---|
| 122 | m[2][0] = xz + wy; m[3][0] = 0.0; |
---|
[4578] | 123 | |
---|
[2551] | 124 | m[0][1] = xy + wz; m[1][1] = 1.0 - (xx + zz); |
---|
| 125 | m[2][1] = yz - wx; m[3][1] = 0.0; |
---|
[4578] | 126 | |
---|
[2551] | 127 | m[0][2] = xz - wy; m[1][2] = yz + wx; |
---|
| 128 | m[2][2] = 1.0 - (xx + yy); m[3][2] = 0.0; |
---|
[4578] | 129 | |
---|
[2551] | 130 | m[0][3] = 0; m[1][3] = 0; |
---|
| 131 | m[2][3] = 0; m[3][3] = 1; |
---|
[2190] | 132 | } |
---|
| 133 | |
---|
[7191] | 134 | |
---|
[8560] | 135 | |
---|
[3449] | 136 | /** |
---|
[7348] | 137 | * @brief Slerps this QUaternion performs a smooth move. |
---|
[7191] | 138 | * @param toQuat to this Quaternion |
---|
| 139 | * @param t \% inth the the direction[0..1] |
---|
| 140 | */ |
---|
| 141 | void Quaternion::slerpTo(const Quaternion& toQuat, float t) |
---|
| 142 | { |
---|
| 143 | float tol[4]; |
---|
| 144 | double omega, cosom, sinom, scale0, scale1; |
---|
| 145 | // float DELTA = 0.2; |
---|
| 146 | |
---|
| 147 | cosom = this->v.x * toQuat.v.x + this->v.y * toQuat.v.y + this->v.z * toQuat.v.z + this->w * toQuat.w; |
---|
| 148 | |
---|
| 149 | if( cosom < 0.0 ) |
---|
| 150 | { |
---|
| 151 | cosom = -cosom; |
---|
| 152 | tol[0] = -toQuat.v.x; |
---|
| 153 | tol[1] = -toQuat.v.y; |
---|
| 154 | tol[2] = -toQuat.v.z; |
---|
| 155 | tol[3] = -toQuat.w; |
---|
| 156 | } |
---|
| 157 | else |
---|
| 158 | { |
---|
| 159 | tol[0] = toQuat.v.x; |
---|
| 160 | tol[1] = toQuat.v.y; |
---|
| 161 | tol[2] = toQuat.v.z; |
---|
| 162 | tol[3] = toQuat.w; |
---|
| 163 | } |
---|
| 164 | |
---|
| 165 | omega = acos(cosom); |
---|
| 166 | sinom = sin(omega); |
---|
| 167 | scale0 = sin((1.0 - t) * omega) / sinom; |
---|
| 168 | scale1 = sin(t * omega) / sinom; |
---|
| 169 | this->v = Vector(scale0 * this->v.x + scale1 * tol[0], |
---|
[7348] | 170 | scale0 * this->v.y + scale1 * tol[1], |
---|
| 171 | scale0 * this->v.z + scale1 * tol[2]); |
---|
[7191] | 172 | this->w = scale0 * this->w + scale1 * tol[3]; |
---|
| 173 | } |
---|
| 174 | |
---|
| 175 | |
---|
| 176 | /** |
---|
[7348] | 177 | * @brief performs a smooth move. |
---|
[4836] | 178 | * @param from where |
---|
| 179 | * @param to where |
---|
| 180 | * @param t the time this transformation should take value [0..1] |
---|
| 181 | * @returns the Result of the smooth move |
---|
[5420] | 182 | */ |
---|
[4998] | 183 | Quaternion Quaternion::quatSlerp(const Quaternion& from, const Quaternion& to, float t) |
---|
[2551] | 184 | { |
---|
| 185 | float tol[4]; |
---|
| 186 | double omega, cosom, sinom, scale0, scale1; |
---|
[3971] | 187 | // float DELTA = 0.2; |
---|
[2551] | 188 | |
---|
[3966] | 189 | cosom = from.v.x * to.v.x + from.v.y * to.v.y + from.v.z * to.v.z + from.w * to.w; |
---|
[2551] | 190 | |
---|
[4578] | 191 | if( cosom < 0.0 ) |
---|
[7348] | 192 | { |
---|
| 193 | cosom = -cosom; |
---|
| 194 | tol[0] = -to.v.x; |
---|
| 195 | tol[1] = -to.v.y; |
---|
| 196 | tol[2] = -to.v.z; |
---|
| 197 | tol[3] = -to.w; |
---|
| 198 | } |
---|
[2551] | 199 | else |
---|
[7348] | 200 | { |
---|
| 201 | tol[0] = to.v.x; |
---|
| 202 | tol[1] = to.v.y; |
---|
| 203 | tol[2] = to.v.z; |
---|
| 204 | tol[3] = to.w; |
---|
| 205 | } |
---|
[4578] | 206 | |
---|
[3966] | 207 | omega = acos(cosom); |
---|
| 208 | sinom = sin(omega); |
---|
| 209 | scale0 = sin((1.0 - t) * omega) / sinom; |
---|
| 210 | scale1 = sin(t * omega) / sinom; |
---|
[3971] | 211 | return Quaternion(Vector(scale0 * from.v.x + scale1 * tol[0], |
---|
[7348] | 212 | scale0 * from.v.y + scale1 * tol[1], |
---|
| 213 | scale0 * from.v.z + scale1 * tol[2]), |
---|
[4578] | 214 | scale0 * from.w + scale1 * tol[3]); |
---|
[2551] | 215 | } |
---|
| 216 | |
---|
[7348] | 217 | /** |
---|
| 218 | * @returns the heading |
---|
| 219 | */ |
---|
| 220 | float Quaternion::getHeading() const |
---|
| 221 | { |
---|
| 222 | float pole = this->v.x*this->v.y + this->v.z*this->w; |
---|
| 223 | if (fabsf(pole) != 0.5) |
---|
| 224 | return atan2(2.0* (v.y*w - v.x*v.z), 1 - 2.0*(v.y*v.y - v.z*v.z)); |
---|
| 225 | else if (pole == .5) // North Pole |
---|
| 226 | return 2.0 * atan2(v.x, w); |
---|
| 227 | else // South Pole |
---|
| 228 | return -2.0 * atan2(v.x, w); |
---|
| 229 | } |
---|
[2551] | 230 | |
---|
[2190] | 231 | /** |
---|
[7348] | 232 | * @returns the Attitude |
---|
| 233 | */ |
---|
| 234 | float Quaternion::getAttitude() const |
---|
| 235 | { |
---|
| 236 | return asin(2.0 * (v.x*v.y + v.z*w)); |
---|
| 237 | } |
---|
| 238 | |
---|
| 239 | /** |
---|
| 240 | * @returns the Bank |
---|
| 241 | */ |
---|
| 242 | float Quaternion::getBank() const |
---|
| 243 | { |
---|
| 244 | if (fabsf(this->v.x*this->v.y + this->v.z*this->w) != 0.5) |
---|
| 245 | return atan2(2.0*(v.x*w-v.y*v.z) , 1 - 2.0*(v.x*v.x - v.z*v.z)); |
---|
| 246 | else |
---|
| 247 | return 0.0f; |
---|
| 248 | } |
---|
| 249 | |
---|
| 250 | |
---|
| 251 | /** |
---|
| 252 | * @brief convert a rotational 4x4 glMatrix into a Quaternion |
---|
[4836] | 253 | * @param m: a 4x4 matrix in glMatrix order |
---|
[5420] | 254 | */ |
---|
[2190] | 255 | Quaternion::Quaternion (float m[4][4]) |
---|
| 256 | { |
---|
[4578] | 257 | |
---|
[2551] | 258 | float tr, s, q[4]; |
---|
| 259 | int i, j, k; |
---|
| 260 | |
---|
| 261 | int nxt[3] = {1, 2, 0}; |
---|
| 262 | |
---|
| 263 | tr = m[0][0] + m[1][1] + m[2][2]; |
---|
| 264 | |
---|
[7348] | 265 | // check the diagonal |
---|
[4578] | 266 | if (tr > 0.0) |
---|
[2551] | 267 | { |
---|
| 268 | s = sqrt (tr + 1.0); |
---|
| 269 | w = s / 2.0; |
---|
| 270 | s = 0.5 / s; |
---|
| 271 | v.x = (m[1][2] - m[2][1]) * s; |
---|
| 272 | v.y = (m[2][0] - m[0][2]) * s; |
---|
| 273 | v.z = (m[0][1] - m[1][0]) * s; |
---|
[7348] | 274 | } |
---|
| 275 | else |
---|
| 276 | { |
---|
| 277 | // diagonal is negative |
---|
| 278 | i = 0; |
---|
| 279 | if (m[1][1] > m[0][0]) i = 1; |
---|
[2551] | 280 | if (m[2][2] > m[i][i]) i = 2; |
---|
| 281 | j = nxt[i]; |
---|
| 282 | k = nxt[j]; |
---|
| 283 | |
---|
| 284 | s = sqrt ((m[i][i] - (m[j][j] + m[k][k])) + 1.0); |
---|
[4578] | 285 | |
---|
[2551] | 286 | q[i] = s * 0.5; |
---|
[4578] | 287 | |
---|
[2551] | 288 | if (s != 0.0) s = 0.5 / s; |
---|
[4578] | 289 | |
---|
[7348] | 290 | q[3] = (m[j][k] - m[k][j]) * s; |
---|
[2551] | 291 | q[j] = (m[i][j] + m[j][i]) * s; |
---|
| 292 | q[k] = (m[i][k] + m[k][i]) * s; |
---|
| 293 | |
---|
[7348] | 294 | v.x = q[0]; |
---|
| 295 | v.y = q[1]; |
---|
| 296 | v.z = q[2]; |
---|
| 297 | w = q[3]; |
---|
[2190] | 298 | } |
---|
| 299 | } |
---|
| 300 | |
---|
[8560] | 301 | |
---|
[2190] | 302 | /** |
---|
[8560] | 303 | * Creates a quaternion from a 3x3 rotation matrix. |
---|
| 304 | * @param mat The 3x3 source rotation matrix. |
---|
| 305 | * @return The equivalent 4 float quaternion. |
---|
| 306 | */ |
---|
| 307 | Quaternion::Quaternion(float mat[3][3]) |
---|
| 308 | { |
---|
| 309 | int NXT[] = {1, 2, 0}; |
---|
| 310 | float q[4]; |
---|
| 311 | |
---|
| 312 | // check the diagonal |
---|
| 313 | float tr = mat[0][0] + mat[1][1] + mat[2][2]; |
---|
| 314 | if( tr > 0.0f) { |
---|
| 315 | float s = (float)sqrtf(tr + 1.0f); |
---|
| 316 | this->w = s * 0.5f; |
---|
| 317 | s = 0.5f / s; |
---|
| 318 | this->v.x = (mat[1][2] - mat[2][1]) * s; |
---|
| 319 | this->v.y = (mat[2][0] - mat[0][2]) * s; |
---|
| 320 | this->v.z = (mat[0][1] - mat[1][0]) * s; |
---|
| 321 | } |
---|
| 322 | else |
---|
| 323 | { |
---|
| 324 | // diagonal is negative |
---|
| 325 | // get biggest diagonal element |
---|
| 326 | int i = 0; |
---|
| 327 | if (mat[1][1] > mat[0][0]) i = 1; |
---|
| 328 | if (mat[2][2] > mat[i][i]) i = 2; |
---|
| 329 | //setup index sequence |
---|
| 330 | int j = NXT[i]; |
---|
| 331 | int k = NXT[j]; |
---|
| 332 | |
---|
| 333 | float s = (float)sqrtf((mat[i][i] - (mat[j][j] + mat[k][k])) + 1.0f); |
---|
| 334 | |
---|
| 335 | q[i] = s * 0.5f; |
---|
| 336 | |
---|
| 337 | if (s != 0.0f) s = 0.5f / s; |
---|
| 338 | |
---|
| 339 | q[j] = (mat[i][j] + mat[j][i]) * s; |
---|
| 340 | q[k] = (mat[i][k] + mat[k][i]) * s; |
---|
| 341 | q[3] = (mat[j][k] - mat[k][j]) * s; |
---|
| 342 | |
---|
| 343 | this->v.x = q[0]; |
---|
| 344 | this->v.y = q[1]; |
---|
| 345 | this->v.z = q[2]; |
---|
| 346 | this->w = q[3]; |
---|
| 347 | } |
---|
| 348 | } |
---|
| 349 | |
---|
| 350 | /** |
---|
[7348] | 351 | * @brief outputs some nice formated debug information about this quaternion |
---|
[3541] | 352 | */ |
---|
[7003] | 353 | void Quaternion::debug() const |
---|
[3541] | 354 | { |
---|
| 355 | PRINT(0)("real a=%f; imag: x=%f y=%f z=%f\n", w, v.x, v.y, v.z); |
---|
| 356 | } |
---|
| 357 | |
---|
[7348] | 358 | /** |
---|
| 359 | * @brief another better Quaternion Debug Function. |
---|
| 360 | */ |
---|
[7003] | 361 | void Quaternion::debug2() const |
---|
[5000] | 362 | { |
---|
| 363 | Vector axis = this->getSpacialAxis(); |
---|
| 364 | PRINT(0)("angle = %f, axis: ax=%f, ay=%f, az=%f\n", this->getSpacialAxisAngle(), axis.x, axis.y, axis.z ); |
---|
| 365 | } |
---|
[8560] | 366 | |
---|
| 367 | |
---|
| 368 | |
---|
| 369 | |
---|
| 370 | |
---|
| 371 | |
---|