Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/branches/camera/src/lib/math/rotation_OBSOLETE.cc @ 10222

Last change on this file since 10222 was 9406, checked in by bensch, 18 years ago

orxonox/trunk: merged the proxy back

merged with commandsvn merge -r9346:HEAD https://svn.orxonox.net/orxonox/branches/proxy .

no conflicts

File size: 4.4 KB
Line 
1/*
2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
11   ### File Specific:
12   main-programmer: Christian Meyer
13   co-programmer: ...
14*/
15
16#define DEBUG_SPECIAL_MODULE DEBUG_MODULE_MATH
17
18#include "rotation_OBSOLETE.h"
19#ifdef DEBUG
20  #include "debug.h"
21#else
22  #include <stdio.h>
23  #define PRINT(x) printf
24#endif
25
26
27
28/**
29 *  create a rotation from a vector
30 * @param v: a vector
31*/
32Rotation::Rotation (const Vector& v)
33{
34  Vector x = Vector( 1, 0, 0);
35  Vector axis = x.cross( v);
36  axis.normalize();
37  float angle = angleRad( x, v);
38  float ca = cos(angle);
39  float sa = sin(angle);
40  m[0] = 1.0f+(1.0f-ca)*(axis.x*axis.x-1.0f);
41  m[1] = -axis.z*sa+(1.0f-ca)*axis.x*axis.y;
42  m[2] = axis.y*sa+(1.0f-ca)*axis.x*axis.z;
43  m[3] = axis.z*sa+(1.0f-ca)*axis.x*axis.y;
44  m[4] = 1.0f+(1.0f-ca)*(axis.y*axis.y-1.0f);
45  m[5] = -axis.x*sa+(1.0f-ca)*axis.y*axis.z;
46  m[6] = -axis.y*sa+(1.0f-ca)*axis.x*axis.z;
47  m[7] = axis.x*sa+(1.0f-ca)*axis.y*axis.z;
48  m[8] = 1.0f+(1.0f-ca)*(axis.z*axis.z-1.0f);
49}
50
51/**
52 *  creates a rotation from an axis and an angle (radians!)
53 * @param axis: the rotational axis
54 * @param angle: the angle in radians
55*/
56Rotation::Rotation (const Vector& axis, float angle)
57{
58  float ca, sa;
59  ca = cos(angle);
60  sa = sin(angle);
61  m[0] = 1.0f+(1.0f-ca)*(axis.x*axis.x-1.0f);
62  m[1] = -axis.z*sa+(1.0f-ca)*axis.x*axis.y;
63  m[2] = axis.y*sa+(1.0f-ca)*axis.x*axis.z;
64  m[3] = axis.z*sa+(1.0f-ca)*axis.x*axis.y;
65  m[4] = 1.0f+(1.0f-ca)*(axis.y*axis.y-1.0f);
66  m[5] = -axis.x*sa+(1.0f-ca)*axis.y*axis.z;
67  m[6] = -axis.y*sa+(1.0f-ca)*axis.x*axis.z;
68  m[7] = axis.x*sa+(1.0f-ca)*axis.y*axis.z;
69  m[8] = 1.0f+(1.0f-ca)*(axis.z*axis.z-1.0f);
70}
71
72/**
73 *  creates a rotation from euler angles (pitch/yaw/roll)
74 * @param pitch: rotation around z (in radians)
75 * @param yaw: rotation around y (in radians)
76 * @param roll: rotation around x (in radians)
77*/
78Rotation::Rotation ( float pitch, float yaw, float roll)
79{
80  float cy, sy, cr, sr, cp, sp;
81  cy = cos(yaw);
82  sy = sin(yaw);
83  cr = cos(roll);
84  sr = sin(roll);
85  cp = cos(pitch);
86  sp = sin(pitch);
87  m[0] = cy*cr;
88  m[1] = -cy*sr;
89  m[2] = sy;
90  m[3] = cp*sr+sp*sy*cr;
91  m[4] = cp*cr-sp*sr*sy;
92  m[5] = -sp*cy;
93  m[6] = sp*sr-cp*sy*cr;
94  m[7] = sp*cr+cp*sy*sr;
95  m[8] = cp*cy;
96}
97
98/**
99 *  creates a nullrotation (an identity rotation)
100*/
101Rotation::Rotation ()
102{
103  m[0] = 1.0f;
104  m[1] = 0.0f;
105  m[2] = 0.0f;
106  m[3] = 0.0f;
107  m[4] = 1.0f;
108  m[5] = 0.0f;
109  m[6] = 0.0f;
110  m[7] = 0.0f;
111  m[8] = 1.0f;
112}
113
114/**
115 *  fills the specified buffer with a 4x4 glmatrix
116 * @param buffer: Pointer to an array of 16 floats
117
118   Use this to get the rotation in a gl-compatible format
119*/
120void Rotation::glmatrix (float* buffer)
121{
122        buffer[0] = m[0];
123        buffer[1] = m[3];
124        buffer[2] = m[6];
125        buffer[3] = m[0];
126        buffer[4] = m[1];
127        buffer[5] = m[4];
128        buffer[6] = m[7];
129        buffer[7] = m[0];
130        buffer[8] = m[2];
131        buffer[9] = m[5];
132        buffer[10] = m[8];
133        buffer[11] = m[0];
134        buffer[12] = m[0];
135        buffer[13] = m[0];
136        buffer[14] = m[0];
137        buffer[15] = m[1];
138}
139
140/**
141 *  multiplies two rotational matrices
142 * @param r: another Rotation
143 * @return the matrix product of the Rotations
144
145   Use this to rotate one rotation by another
146*/
147Rotation Rotation::operator* (const Rotation& r)
148{
149        Rotation p;
150
151        p.m[0] = m[0]*r.m[0] + m[1]*r.m[3] + m[2]*r.m[6];
152        p.m[1] = m[0]*r.m[1] + m[1]*r.m[4] + m[2]*r.m[7];
153        p.m[2] = m[0]*r.m[2] + m[1]*r.m[5] + m[2]*r.m[8];
154
155        p.m[3] = m[3]*r.m[0] + m[4]*r.m[3] + m[5]*r.m[6];
156        p.m[4] = m[3]*r.m[1] + m[4]*r.m[4] + m[5]*r.m[7];
157        p.m[5] = m[3]*r.m[2] + m[4]*r.m[5] + m[5]*r.m[8];
158
159        p.m[6] = m[6]*r.m[0] + m[7]*r.m[3] + m[8]*r.m[6];
160        p.m[7] = m[6]*r.m[1] + m[7]*r.m[4] + m[8]*r.m[7];
161        p.m[8] = m[6]*r.m[2] + m[7]*r.m[5] + m[8]*r.m[8];
162
163        return p;
164}
165
166
167/**
168 *  rotates the vector by the given rotation
169 * @param v: a vector
170 * @param r: a rotation
171 * @return the rotated vector
172*/
173Vector rotateVector( const Vector& v, const Rotation& r)
174{
175  Vector t;
176
177  t.x = v.x * r.m[0] + v.y * r.m[1] + v.z * r.m[2];
178  t.y = v.x * r.m[3] + v.y * r.m[4] + v.z * r.m[5];
179  t.z = v.x * r.m[6] + v.y * r.m[7] + v.z * r.m[8];
180
181  return t;
182}
Note: See TracBrowser for help on using the repository browser.