Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/branches/cd/src/lib/collision_detection/obb_tree_node.cc @ 7445

Last change on this file since 7445 was 7365, checked in by bensch, 19 years ago

orxonox/branches/cd: merged the new collision-detection back.
merged and collissions resolved.

File size: 37.1 KB
Line 
1/*
2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
11### File Specific:
12   main-programmer: Patrick Boenzli
13*/
14
15#define DEBUG_SPECIAL_MODULE DEBUG_MODULE_COLLISION_DETECTION
16
17#include "obb_tree_node.h"
18#include "obb_tree.h"
19#include "obb.h"
20
21#include "matrix.h"
22#include "model.h"
23#include "world_entity.h"
24#include "plane.h"
25
26#include "color.h"
27#include "glincl.h"
28
29#include <list>
30#include <vector>
31#include "debug.h"
32
33
34
35using namespace std;
36
37
38GLUquadricObj* OBBTreeNode_sphereObj = NULL;
39
40
41/**
42 *  standard constructor
43 * @param tree: reference to the obb tree
44 * @param depth: the depth of the obb tree to generate
45 */
46OBBTreeNode::OBBTreeNode (const OBBTree& tree, OBBTreeNode* prev, int depth)
47    : BVTreeNode()
48{
49  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
50
51  this->obbTree = &tree;
52  this->nodePrev = prev;
53  this->depth = depth;
54  this->nextID = 0;
55
56  this->nodeLeft = NULL;
57  this->nodeRight = NULL;
58  this->bvElement = NULL;
59
60  this->triangleIndexList1 = NULL;
61  this->triangleIndexList2 = NULL;
62
63  this->modelInf = NULL;
64  this->triangleIndexes = NULL;
65
66  if( OBBTreeNode_sphereObj == NULL)
67    OBBTreeNode_sphereObj = gluNewQuadric();
68
69  this->owner = NULL;
70
71  /* debug ids */
72  if( this->nodePrev)
73    this->treeIndex = 100 * this->depth + this->nodePrev->getID();
74  else
75    this->treeIndex = 0;
76}
77
78
79/**
80 *  standard deconstructor
81 */
82OBBTreeNode::~OBBTreeNode ()
83{
84  if( this->nodeLeft)
85    delete this->nodeLeft;
86  if( this->nodeRight)
87    delete this->nodeRight;
88
89  if( this->bvElement)
90    delete this->bvElement;
91
92//   if( this->triangleIndexList1 != NULL)
93//     delete [] this->triangleIndexList1;
94//   if( this->triangleIndexList2 != NULL)
95//     delete [] this->triangleIndexList2;
96}
97
98
99/**
100 *  creates a new BVTree or BVTree partition
101 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
102 * @param modInfo: model informations from the abstrac model
103 *
104 * this function creates the Bounding Volume tree from a modelInfo struct and bases its calculations
105 * on the triangle informations (triangle soup not polygon soup)
106 */
107void OBBTreeNode::spawnBVTree(const modelInfo& modelInf, const int* triangleIndexes, int length)
108{
109  PRINTF(3)("\n==============================Creating OBB Tree Node==================\n");
110  PRINT(3)(" OBB Tree Infos: \n");
111  PRINT(3)("\tDepth: %i \n\tTree Index: %i \n\tNumber of Triangles: %i\n", depth, this->treeIndex, length);
112  this->depth = depth;
113
114  this->bvElement = new OBB();
115  this->bvElement->modelInf = &modelInf;
116  this->bvElement->triangleIndexes = triangleIndexes;
117  this->bvElement->triangleIndexesLength = length;
118
119  /* create the bounding boxes in three steps */
120  this->calculateBoxCovariance(*this->bvElement, modelInf, triangleIndexes, length);
121  this->calculateBoxEigenvectors(*this->bvElement, modelInf, triangleIndexes, length);
122  this->calculateBoxAxis(*this->bvElement, modelInf, triangleIndexes, length);
123
124  /* do we need to descent further in the obb tree?*/
125  if( likely( this->depth > 0))
126  {
127    this->forkBox(*this->bvElement);
128
129    if( this->triangleIndexLength1 >= 3)
130    {
131      this->nodeLeft = new OBBTreeNode(*this->obbTree, this, depth - 1);
132      this->nodeLeft->spawnBVTree(modelInf, this->triangleIndexList1, this->triangleIndexLength1);
133    }
134    if( this->triangleIndexLength2 >= 3)
135    {
136      this->nodeRight = new OBBTreeNode(*this->obbTree, this, depth - 1);
137      this->nodeRight->spawnBVTree(modelInf, this->triangleIndexList2, this->triangleIndexLength2);
138    }
139  }
140}
141
142
143
144/**
145 *  calculate the box covariance matrix
146 * @param box: reference to the box
147 * @param modelInf: the model info structure of the model
148 * @param tirangleIndexes: an array with the indexes of the triangles inside this
149 * @param length: the length of the indexes array
150 */
151void OBBTreeNode::calculateBoxCovariance(OBB& box, const modelInfo& modelInf, const int* triangleIndexes, int length)
152{
153  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
154  float     face = 0.0f;                             //!< surface area of the entire convex hull
155  Vector    centroid[length];                        //!< centroid of the i'th convex hull
156  Vector    center;                                  //!< the center of the entire hull
157  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
158  Vector    t1, t2;                                  //!< temporary values
159  float     covariance[3][3] = {0,0,0, 0,0,0, 0,0,0};//!< the covariance matrix
160  sVec3D*   tmpVec = NULL;                           //!< a temp saving place for sVec3Ds
161
162
163  /* fist compute all the convex hull face/facelets and centroids */
164  for( int i = 0; i < length ; ++i)
165  {
166    tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[0]]);
167    p = *tmpVec;
168    tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[1]]);
169    q = *tmpVec;
170    tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[2]]);
171    r = *tmpVec;
172
173    /* finding the facelet surface via cross-product */
174    t1 = p - q;
175    t2 = p - r;
176    facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
177    /* update the entire convex hull surface */
178    face += facelet[i];
179
180    /* calculate the cetroid of the hull triangles */
181    centroid[i] = (p + q + r) / 3.0f;
182    /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
183    center += centroid[i] * facelet[i];
184    /* the arithmetical center */
185  }
186  /* take the average of the centroid sum */
187  center /= face;
188
189
190  /* now calculate the covariance matrix - if not written in three for-loops,
191     it would compute faster: minor */
192  for( int j = 0; j < 3; ++j)
193  {
194    for( int k = 0; k < 3; ++k)
195    {
196      for( int i = 0; i < length; ++i)
197      {
198        tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[0]]);
199        p = *tmpVec;
200        tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[1]]);
201        q = *tmpVec;
202        tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[2]]);
203        r = *tmpVec;
204
205        covariance[j][k] = facelet[i] * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
206                           q[j] * q[k] + r[j] * r[k]);
207      }
208      covariance[j][k] = covariance[j][k] / (12.0f * face) - center[j] * center[k];
209    }
210  }
211  for( int i = 0; i < 3; ++i)
212  {
213    box.covarianceMatrix[i][0] = covariance[i][0];
214    box.covarianceMatrix[i][1] = covariance[i][1];
215    box.covarianceMatrix[i][2] = covariance[i][2];
216  }
217  box.center = center;
218
219
220  std::vector<int>           vertIndexVector;                           //!< vertex indexes list
221  int                        vertIndex;                                 //!< index to vertex
222  bool                       vertexFound;                               //!< vertex found flag
223  Vector                     arithCenter;                               //!< aritmetical center
224
225  /* calculate the arithmetical center of the box */
226
227  /* go thourgh all vertices, add only the used vertices indexes */
228//   for( int i = 0; i < length; ++i)
229//   {
230//     for(int j = 0; j < 3; ++j)
231//     {
232//       vertIndex = modelInf.pTriangles[triangleIndexes[i]].indexToVertices[j];
233//
234//       vertexFound = false;
235//       for( int i = 0; i < vertIndexVector.size(); i++)
236//       {
237//         if( vertIndexVector[i] == vertIndex)
238//           vertexFound = true;
239//       }
240//       if( !vertexFound)
241//         vertIndexVector.push_back(vertIndex);
242//     }
243//   }
244//   /* now realy calculate the center */
245//   for( int i = 0; i < vertIndexVector.size(); ++i)
246//   {
247//     tmpVec = (sVec3D*)(&modelInf.pVertices[vertIndexVector[i]]);
248//     arithCenter += *tmpVec;
249//   }
250//   box.arithCenter = arithCenter / vertIndexVector.size();
251
252
253
254  /* debug output section*/
255  PRINTF(3)("\nOBB Covariance Matrix:\n");
256  for(int j = 0; j < 3; ++j)
257  {
258    PRINT(3)("\t\t");
259    for(int k = 0; k < 3; ++k)
260    {
261      PRINT(3)("%11.4f\t", covariance[j][k]);
262    }
263    PRINT(3)("\n");
264  }
265  PRINTF(3)("\nWeighteed OBB Center:\n\t\t%11.4f\t %11.4f\t %11.4f\n", center.x, center.y, center.z);
266//   PRINTF(3)("\nArithmetical OBB Center:\n\t\t%11.4f\t %11.4f\t %11.4f\n", box.arithCenter.x, box.arithCenter.y, box.arithCenter.z);
267
268  /* write back the covariance matrix data to the object oriented bouning box */
269}
270
271
272
273/**
274 *  calculate the eigenvectors for the object oriented box
275 * @param box: reference to the box
276 * @param modelInf: the model info structure of the model
277 * @param tirangleIndexes: an array with the indexes of the triangles inside this
278 * @param length: the length of the indexes array
279 */
280void OBBTreeNode::calculateBoxEigenvectors(OBB& box, const modelInfo& modelInf,
281    const int* triangleIndexes, int length)
282{
283
284  Vector         axis[3];                            //!< the references to the obb axis
285  Matrix         covMat(  box.covarianceMatrix  );   //!< covariance matrix (in the matrix dataform)
286
287  /*
288  now getting spanning vectors of the sub-space:
289  the eigenvectors of a symmertric matrix, such as the
290  covarience matrix are mutually orthogonal.
291  after normalizing them, they can be used as a the basis
292  vectors
293  */
294
295  /* calculate the axis */
296  covMat.getEigenVectors(axis[0], axis[1], axis[2] );
297  box.axis[0] = axis[0];
298  box.axis[1] = axis[1];
299  box.axis[2] = axis[2];
300
301  PRINTF(3)("Eigenvectors:\n");
302  PRINT(3)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[0].x, box.axis[0].y, box.axis[0].z);
303  PRINT(3)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[1].x, box.axis[1].y, box.axis[1].z);
304  PRINT(3)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[2].x, box.axis[2].y, box.axis[2].z);
305}
306
307
308
309
310/**
311 *  calculate the eigenvectors for the object oriented box
312 * @param box: reference to the box
313 * @param modelInf: the model info structure of the model
314 * @param tirangleIndexes: an array with the indexes of the triangles inside this
315 * @param length: the length of the indexes array
316 */
317void OBBTreeNode::calculateBoxAxis(OBB& box, const modelInfo& modelInf, const int* triangleIndexes, int length)
318{
319
320  PRINTF(3)("Calculate Box Axis\n");
321  /* now get the axis length */
322  Line                ax[3];                                 //!< the axis
323  float               halfLength[3];                         //!< half length of the axis
324  float               tmpLength;                             //!< tmp save point for the length
325  Plane               p0(box.axis[0], box.center);           //!< the axis planes
326  Plane               p1(box.axis[1], box.center);           //!< the axis planes
327  Plane               p2(box.axis[2], box.center);           //!< the axis planes
328  float               maxLength[3];                          //!< maximal lenth of the axis
329  float               minLength[3];                          //!< minimal length of the axis
330  const sVec3D*       tmpVec;                                //!< variable taking tmp vectors
331
332
333  /* get the maximal dimensions of the body in all directions */
334  /* for the initialisation the value just has to be inside of the polygon soup -> first vertices (rand) */
335  tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[0]].indexToVertices[0]]);
336  maxLength[0] = p0.distancePoint(*tmpVec);
337  minLength[0] = p0.distancePoint(*tmpVec);
338  for( int j = 0; j < length; ++j)
339  {
340    for( int i = 0; i < 3; ++i)
341    {
342      tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]]);
343      tmpLength = p0.distancePoint(*tmpVec);
344      if( tmpLength > maxLength[0])
345        maxLength[0] = tmpLength;
346      else if( tmpLength < minLength[0])
347        minLength[0] = tmpLength;
348    }
349  }
350
351  /* for the initialisation the value just has to be inside of the polygon soup -> first vertices (rand) */
352  tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[0]].indexToVertices[0]]);
353  maxLength[1] = p1.distancePoint(*tmpVec);
354  minLength[1] = p1.distancePoint(*tmpVec);
355  for( int j = 0; j < length; ++j)
356  {
357    for( int i = 0; i < 3; ++i)
358    {
359      tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]]);
360      tmpLength = p1.distancePoint(*tmpVec);
361      if( tmpLength > maxLength[1])
362        maxLength[1] = tmpLength;
363      else if( tmpLength < minLength[1])
364        minLength[1] = tmpLength;
365    }
366  }
367
368  /* for the initialisation the value just has to be inside of the polygon soup -> first vertices (rand) */
369  tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[0]].indexToVertices[0]]);
370  maxLength[2] = p2.distancePoint(*tmpVec);
371  minLength[2] = p2.distancePoint(*tmpVec);
372  for( int j = 0; j < length; ++j)
373  {
374    for( int i = 0; i < 3; ++i)
375    {
376      tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]]);
377      tmpLength = p2.distancePoint(*tmpVec);
378      if( tmpLength > maxLength[2])
379        maxLength[2] = tmpLength;
380      else if( tmpLength < minLength[2])
381        minLength[2] = tmpLength;
382    }
383  }
384
385
386  /* calculate the real centre of the body by using the axis length */
387  float               centerOffset[3];
388
389  for( int i = 0; i < 3; ++i)
390  {
391    centerOffset[i] = (maxLength[i] + minLength[i]) / 2.0f;       // min length is negatie
392    box.halfLength[i] = (maxLength[i] - minLength[i]) / 2.0f;      // min length is negative
393  }
394  box.center.x += centerOffset[0];
395  box.center.y += centerOffset[1];
396  box.center.z += centerOffset[2];
397
398  PRINTF(3)("\n");
399  PRINT(3)("\tAxis Length x: %f (max: %11.2f, \tmin: %11.2f)\n", halfLength[0], maxLength[0], minLength[0]);
400  PRINT(3)("\tAxis Length x: %f (max: %11.2f, \tmin: %11.2f)\n", halfLength[1], maxLength[1], minLength[1]);
401  PRINT(3)("\tAxis Length x: %f (max: %11.2f, \tmin: %11.2f)\n", halfLength[2], maxLength[2], minLength[2]);
402
403
404//   box.halfLength[0] = halfLength[0];
405//   box.halfLength[1] = halfLength[1];
406//   box.halfLength[2] = halfLength[2];
407}
408
409
410
411/**
412 *  this separates an ob-box in the middle
413 * @param box: the box to separate
414 *
415 * this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
416 */
417void OBBTreeNode::forkBox(OBB& box)
418{
419
420  PRINTF(3)("Fork Box\n");
421  PRINTF(4)("Calculating the longest Axis\n");
422  /* get the longest axis of the box */
423  float               longestAxis = -1.0f;                 //!< the length of the longest axis
424  int                 longestAxisIndex = 0;                //!< this is the nr of the longest axis
425
426
427  /* now get the longest axis of the three exiting */
428  for( int i = 0; i < 3; ++i)
429  {
430    if( longestAxis < box.halfLength[i])
431    {
432      longestAxis = box.halfLength[i];
433      longestAxisIndex = i;
434    }
435  }
436  PRINTF(3)("\nLongest Axis is: Nr %i with a half-length of:%11.2f\n", longestAxisIndex, longestAxis);
437
438
439  PRINTF(4)("Separating along the longest axis\n");
440  /* get the closest vertex near the center */
441  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
442  float               tmpDist;                             //!< variable to save diverse distances temporarily
443  int                 vertexIndex;                         //!< index of the vertex near the center
444  Plane               middlePlane(box.axis[longestAxisIndex], box.center); //!< the middle plane
445  const sVec3D*       tmpVec;                              //!< temp simple 3D vector
446
447
448  /* now definin the separation plane through this specified nearest point and partition
449  the points depending on which side they are located
450  */
451  std::list<int>           partition1;                           //!< the vertex partition 1
452  std::list<int>           partition2;                           //!< the vertex partition 2
453  float*                   triangleCenter = new float[3];        //!< the center of the triangle
454  const float*             a;                                    //!< triangle  edge a
455  const float*             b;                                    //!< triangle  edge b
456  const float*             c;                                    //!< triangle  edge c
457
458
459  /* find the center of the box */
460  this->separationPlane = Plane(box.axis[longestAxisIndex], box.center);
461  this->sepPlaneCenter[0] = box.center.x;
462  this->sepPlaneCenter[1] = box.center.y;
463  this->sepPlaneCenter[2] = box.center.z;
464  this->longestAxisIndex = longestAxisIndex;
465
466  for( int i = 0; i < box.triangleIndexesLength; ++i)
467  {
468    /* first calculate the middle of the triangle */
469    a = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[0]];
470    b = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[1]];
471    c = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[2]];
472
473    triangleCenter[0] = (a[0] + b[0] + c[0]) / 3.0f;
474    triangleCenter[1] = (a[1] + b[1] + c[1]) / 3.0f;
475    triangleCenter[2] = (a[2] + b[2] + c[2]) / 3.0f;
476    tmpDist = this->separationPlane.distancePoint(*((sVec3D*)triangleCenter));
477
478    if( tmpDist > 0.0f)
479      partition1.push_back(box.triangleIndexes[i]); /* positive numbers plus zero */
480    else if( tmpDist < 0.0f)
481      partition2.push_back(box.triangleIndexes[i]); /* negatice numbers */
482    else {
483      partition1.push_back(box.triangleIndexes[i]); /* 0.0f? unprobable... */
484      partition2.push_back(box.triangleIndexes[i]);
485    }
486  }
487  PRINTF(3)("\nPartition1: got \t%i Vertices \nPartition2: got \t%i Vertices\n", partition1.size(), partition2.size());
488
489
490  /* now comes the separation into two different sVec3D arrays */
491  int                index;                                //!< index storage place
492  int*               triangleIndexList1;                   //!< the vertex list 1
493  int*               triangleIndexList2;                   //!< the vertex list 2
494  std::list<int>::iterator element;                        //!< the list iterator
495
496  triangleIndexList1 = new int[partition1.size()];
497  triangleIndexList2 = new int[partition2.size()];
498
499  for( element = partition1.begin(), index = 0; element != partition1.end(); element++, index++)
500    triangleIndexList1[index] = (*element);
501
502  for( element = partition2.begin(), index = 0; element != partition2.end(); element++, index++)
503    triangleIndexList2[index] = (*element);
504
505  if( this->triangleIndexList1!= NULL)
506    delete[] this->triangleIndexList1;
507  this->triangleIndexList1 = triangleIndexList1;
508  this->triangleIndexLength1 = partition1.size();
509
510  if( this->triangleIndexList2 != NULL)
511    delete[] this->triangleIndexList2;
512  this->triangleIndexList2 = triangleIndexList2;
513  this->triangleIndexLength2 = partition2.size();
514}
515
516
517
518
519void OBBTreeNode::collideWith(BVTreeNode* treeNode, WorldEntity* nodeA, WorldEntity* nodeB)
520{
521  if( unlikely(treeNode == NULL))
522    return;
523
524  PRINTF(3)("collideWith\n");
525  /* if the obb overlap, make subtests: check which node is realy overlaping  */
526  PRINTF(3)("Checking OBB %i vs %i: ", this->getIndex(), treeNode->getIndex());
527  //   if( unlikely(treeNode == NULL)) return;
528
529
530  if( this->overlapTest(*this->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
531  {
532    PRINTF(3)("collision @ lvl %i, object %s vs. %s, (%p, %p)\n", this->depth, nodeA->getClassName(), nodeB->getClassName(), this->nodeLeft, this->nodeRight);
533
534    /* check if left node overlaps */
535    if( likely( this->nodeLeft != NULL))
536    {
537      PRINTF(3)("Checking OBB %i vs %i: ", this->nodeLeft->getIndex(), treeNode->getIndex());
538      if( this->overlapTest(*this->nodeLeft->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
539      {
540        this->nodeLeft->collideWith((((const OBBTreeNode*)treeNode)->nodeLeft), nodeA, nodeB);
541        this->nodeLeft->collideWith((((const OBBTreeNode*)treeNode)->nodeRight), nodeA, nodeB);
542      }
543    }
544    /* check if right node overlaps */
545    if( likely( this->nodeRight != NULL))
546    {
547      PRINTF(3)("Checking OBB %i vs %i: ", this->nodeRight->getIndex(), treeNode->getIndex());
548      if(this->overlapTest(*this->nodeRight->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
549      {
550        this->nodeRight->collideWith((((const OBBTreeNode*)treeNode)->nodeLeft), nodeA, nodeB);
551        this->nodeRight->collideWith((((const OBBTreeNode*)treeNode)->nodeRight), nodeA, nodeB);
552      }
553    }
554
555    /* so there is a collision and this is the last box in the tree (i.e. leaf) */
556    /* FIXME: If we would choose || insead of && there would also be asymmetrical cases supported */
557    if( unlikely(this->nodeRight == NULL && this->nodeLeft == NULL))
558    {
559      nodeA->collidesWith(nodeB, (((const OBBTreeNode*)&treeNode)->bvElement->center));
560
561      nodeB->collidesWith(nodeA, this->bvElement->center);
562    }
563
564  }
565}
566
567
568
569bool OBBTreeNode::overlapTest(OBB& boxA, OBB& boxB, WorldEntity* nodeA, WorldEntity* nodeB)
570{
571  //HACK remove this again
572  this->owner = nodeA;
573  //   if( boxB == NULL || boxA == NULL)
574  //     return false;
575
576  /* first check all axis */
577  Vector t;
578  float rA = 0.0f;
579  float rB = 0.0f;
580  Vector l;
581  Vector rotAxisA[3];
582  Vector rotAxisB[3];
583
584  rotAxisA[0] =  nodeA->getAbsDir().apply(boxA.axis[0]);
585  rotAxisA[1] =  nodeA->getAbsDir().apply(boxA.axis[1]);
586  rotAxisA[2] =  nodeA->getAbsDir().apply(boxA.axis[2]);
587
588  rotAxisB[0] =  nodeB->getAbsDir().apply(boxB.axis[0]);
589  rotAxisB[1] =  nodeB->getAbsDir().apply(boxB.axis[1]);
590  rotAxisB[2] =  nodeB->getAbsDir().apply(boxB.axis[2]);
591
592
593  t = nodeA->getAbsCoor() + nodeA->getAbsDir().apply(boxA.center) - ( nodeB->getAbsCoor() + nodeB->getAbsDir().apply(boxB.center));
594
595  //   printf("\n");
596  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[0].x, boxA->axis[0].y, boxA->axis[0].z, rotAxisA[0].x, rotAxisA[0].y, rotAxisA[0].z);
597  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[1].x, boxA->axis[1].y, boxA->axis[1].z, rotAxisA[1].x, rotAxisA[1].y, rotAxisA[1].z);
598  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[2].x, boxA->axis[2].y, boxA->axis[2].z, rotAxisA[2].x, rotAxisA[2].y, rotAxisA[2].z);
599  //
600  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[0].x, boxB->axis[0].y, boxB->axis[0].z, rotAxisB[0].x, rotAxisB[0].y, rotAxisB[0].z);
601  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[1].x, boxB->axis[1].y, boxB->axis[1].z, rotAxisB[1].x, rotAxisB[1].y, rotAxisB[1].z);
602  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[2].x, boxB->axis[2].y, boxB->axis[2].z, rotAxisB[2].x, rotAxisB[2].y, rotAxisB[2].z);
603
604
605  /* All 3 axis of the object A */
606  for( int j = 0; j < 3; ++j)
607  {
608    rA = 0.0f;
609    rB = 0.0f;
610    l = rotAxisA[j];
611
612    rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
613    rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
614    rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
615
616    rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
617    rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
618    rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
619
620    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
621
622    if( (rA + rB) < fabs(t.dot(l)))
623    {
624      PRINTF(3)("no Collision\n");
625      return false;
626    }
627  }
628
629  /* All 3 axis of the object B */
630  for( int j = 0; j < 3; ++j)
631  {
632    rA = 0.0f;
633    rB = 0.0f;
634    l = rotAxisB[j];
635
636    rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
637    rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
638    rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
639
640    rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
641    rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
642    rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
643
644    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
645
646    if( (rA + rB) < fabs(t.dot(l)))
647    {
648      PRINTF(3)("no Collision\n");
649      return false;
650    }
651  }
652
653
654  /* Now check for all face cross products */
655
656  for( int j = 0; j < 3; ++j)
657  {
658    for(int k = 0; k < 3; ++k )
659    {
660      rA = 0.0f;
661      rB = 0.0f;
662      l = rotAxisA[j].cross(rotAxisB[k]);
663
664      rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
665      rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
666      rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
667
668      rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
669      rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
670      rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
671
672      PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
673
674      if( (rA + rB) < fabs(t.dot(l)))
675      {
676        PRINTF(3)("keine Kollision\n");
677        return false;
678      }
679    }
680  }
681
682  /* FIXME: there is no collision mark set now */
683     boxA.bCollided = true; /* use this ONLY(!!!!) for drawing operations */
684     boxB.bCollided = true;
685
686
687  PRINTF(3)("Kollision!\n");
688  return true;
689}
690
691
692
693
694
695
696
697
698
699
700/**
701 *
702 * draw the BV tree - debug mode
703 */
704void OBBTreeNode::drawBV(int depth, int drawMode, const Vector& color,  bool top) const
705{
706  /* this function can be used to draw the triangles and/or the points only  */
707  if( drawMode & DRAW_MODEL || drawMode & DRAW_ALL)
708  {
709    if( !(drawMode & DRAW_SINGLE && depth != 0))
710    {
711      if( drawMode & DRAW_POINTS)
712      {
713        glBegin(GL_POINTS);
714        for( int i = 0; i < this->bvElement->modelInf->numVertices*3; i+=3)
715          glVertex3f(this->bvElement->modelInf->pVertices[i],
716                     this->bvElement->modelInf->pVertices[i+1],
717                     this->bvElement->modelInf->pVertices[i+2]);
718        glEnd();
719      }
720    }
721  }
722
723  if (top)
724  {
725    glPushAttrib(GL_ENABLE_BIT);
726    glDisable(GL_LIGHTING);
727    glDisable(GL_TEXTURE_2D);
728  }
729  glColor3f(color.x, color.y, color.z);
730
731
732  /* draw world axes */
733  if( drawMode & DRAW_BV_AXIS)
734  {
735    glBegin(GL_LINES);
736    glColor3f(1.0, 0.0, 0.0);
737    glVertex3f(0.0, 0.0, 0.0);
738    glVertex3f(3.0, 0.0, 0.0);
739
740    glColor3f(0.0, 1.0, 0.0);
741    glVertex3f(0.0, 0.0, 0.0);
742    glVertex3f(0.0, 3.0, 0.0);
743
744    glColor3f(0.0, 0.0, 1.0);
745    glVertex3f(0.0, 0.0, 0.0);
746    glVertex3f(0.0, 0.0, 3.0);
747    glEnd();
748  }
749
750
751  if( drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL)
752  {
753    if( drawMode & DRAW_SINGLE && depth != 0)
754    {
755      /* draw the obb axes */
756      glBegin(GL_LINES);
757      glColor3f(1.0, 0.0, 0.0);
758      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
759      glVertex3f(this->bvElement->center.x + this->bvElement->axis[0].x * this->bvElement->halfLength[0],
760                 this->bvElement->center.y + this->bvElement->axis[0].y * this->bvElement->halfLength[0],
761                 this->bvElement->center.z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]);
762
763      glColor3f(0.0, 1.0, 0.0);
764      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
765      glVertex3f(this->bvElement->center.x + this->bvElement->axis[1].x * this->bvElement->halfLength[1],
766                 this->bvElement->center.y + this->bvElement->axis[1].y * this->bvElement->halfLength[1],
767                 this->bvElement->center.z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]);
768
769      glColor3f(0.0, 0.0, 1.0);
770      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
771      glVertex3f(this->bvElement->center.x + this->bvElement->axis[2].x * this->bvElement->halfLength[2],
772                 this->bvElement->center.y + this->bvElement->axis[2].y * this->bvElement->halfLength[2],
773                 this->bvElement->center.z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]);
774      glEnd();
775    }
776  }
777
778
779  /* DRAW POLYGONS */
780  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL || drawMode & DRAW_BV_BLENDED)
781  {
782    if (top)
783    {
784      glEnable(GL_BLEND);
785      glBlendFunc(GL_SRC_ALPHA, GL_ONE);
786    }
787
788    if( this->nodeLeft == NULL && this->nodeRight == NULL)
789      depth = 0;
790
791    if( depth == 0 /*!(drawMode & DRAW_SINGLE && depth != 0)*/)
792    {
793
794
795      Vector cen = this->bvElement->center;
796      Vector* axis = this->bvElement->axis;
797      float* len = this->bvElement->halfLength;
798
799      if( this->bvElement->bCollided)
800      {
801        glColor4f(1.0, 1.0, 1.0, .5); // COLLISION COLOR
802      }
803      else if( drawMode & DRAW_BV_BLENDED)
804      {
805        glColor4f(color.x, color.y, color.z, .5);
806      }
807
808      // debug out
809      if( this->obbTree->getOwner() != NULL)
810      {
811        PRINTF(0)("debug poly draw: depth: %i, mode: %i, entity-name: %s, class: %s\n", depth, drawMode, this->obbTree->getOwner()->getName(), this->obbTree->getOwner()->getClassName());
812      }
813      else
814        PRINTF(0)("debug poly draw: depth: %i, mode: %i\n", depth, drawMode);
815
816
817      /* draw bounding box */
818      if( drawMode & DRAW_BV_BLENDED)
819        glBegin(GL_QUADS);
820      else
821        glBegin(GL_LINE_LOOP);
822      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
823                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
824                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
825      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
826                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
827                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
828      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
829                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
830                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
831      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
832                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
833                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
834      glEnd();
835
836      if( drawMode & DRAW_BV_BLENDED)
837        glBegin(GL_QUADS);
838      else
839        glBegin(GL_LINE_LOOP);
840      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
841                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
842                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
843      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
844                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
845                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
846      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
847                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
848                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
849      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
850                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
851                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
852      glEnd();
853
854      if( drawMode & DRAW_BV_BLENDED)
855        glBegin(GL_QUADS);
856      else
857        glBegin(GL_LINE_LOOP);
858      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
859                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
860                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
861      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
862                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
863                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
864      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
865                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
866                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
867      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
868                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
869                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
870      glEnd();
871
872      if( drawMode & DRAW_BV_BLENDED)
873        glBegin(GL_QUADS);
874      else
875        glBegin(GL_LINE_LOOP);
876      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
877                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
878                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
879      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
880                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
881                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
882      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
883                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
884                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
885      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
886                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
887                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
888      glEnd();
889
890
891      if( drawMode & DRAW_BV_BLENDED)
892      {
893        glBegin(GL_QUADS);
894        glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
895                   cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
896                   cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
897        glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
898                   cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
899                   cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
900        glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
901                   cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
902                   cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
903        glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
904                   cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
905                   cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
906        glEnd();
907
908        glBegin(GL_QUADS);
909        glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
910                   cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
911                   cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
912        glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
913                   cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
914                   cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
915        glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
916                   cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
917                   cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
918        glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
919                   cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
920                   cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
921        glEnd();
922      }
923
924      if( drawMode & DRAW_BV_BLENDED)
925        glColor3f(color.x, color.y, color.z);
926    }
927  }
928
929  /* DRAW SEPARATING PLANE */
930  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
931  {
932    if( !(drawMode & DRAW_SINGLE && depth != 0))
933    {
934      if( drawMode & DRAW_BV_BLENDED)
935        glColor4f(color.x, color.y, color.z, .6);
936
937      /* now draw the separation plane */
938      Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3];
939      Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3];
940      Vector c = this->bvElement->center;
941      float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
942      float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
943      glBegin(GL_QUADS);
944      glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
945      glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
946      glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
947      glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
948      glEnd();
949
950      if( drawMode & DRAW_BV_BLENDED)
951        glColor4f(color.x, color.y, color.z, 1.0);
952
953    }
954  }
955
956
957
958  if (depth > 0)
959  {
960    if( this->nodeLeft != NULL)
961      this->nodeLeft->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(15.0,0.0,0.0)), false);
962    if( this->nodeRight != NULL)
963      this->nodeRight->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(30.0,0.0,0.0)), false);
964  }
965  this->bvElement->bCollided = false;
966
967  if (top)
968    glPopAttrib();
969}
970
971
972
973void OBBTreeNode::debug() const
974{
975  PRINT(0)("========OBBTreeNode::debug()=====\n");
976  PRINT(0)(" Current depth: %i", this->depth);
977  PRINT(0)(" ");
978  PRINT(0)("=================================\n");
979}
Note: See TracBrowser for help on using the repository browser.