Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/branches/cd/src/lib/collision_detection/obb_tree_node.cc @ 7545

Last change on this file since 7545 was 7545, checked in by patrick, 19 years ago

cd: work on the obb creation algorithm

File size: 36.3 KB
Line 
1/*
2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
11### File Specific:
12   main-programmer: Patrick Boenzli
13*/
14
15#define DEBUG_SPECIAL_MODULE 3/* DEBUG_MODULE_COLLISION_DETECTION*/
16
17#include "obb_tree_node.h"
18#include "obb_tree.h"
19#include "obb.h"
20
21#include "matrix.h"
22#include "model.h"
23#include "world_entity.h"
24#include "plane.h"
25
26#include "color.h"
27#include "glincl.h"
28
29#include <list>
30#include <vector>
31#include "debug.h"
32
33
34
35using namespace std;
36
37
38GLUquadricObj* OBBTreeNode_sphereObj = NULL;
39
40
41/**
42 *  standard constructor
43 * @param tree: reference to the obb tree
44 * @param depth: the depth of the obb tree to generate
45 */
46OBBTreeNode::OBBTreeNode (const OBBTree& tree, OBBTreeNode* prev, int depth)
47    : BVTreeNode()
48{
49  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
50
51  this->obbTree = &tree;
52  this->nodePrev = prev;
53  this->depth = depth;
54  this->nextID = 0;
55
56  this->nodeLeft = NULL;
57  this->nodeRight = NULL;
58  this->bvElement = NULL;
59
60  this->triangleIndexList1 = NULL;
61  this->triangleIndexList2 = NULL;
62
63  this->modelInf = NULL;
64  this->triangleIndexes = NULL;
65
66  if( OBBTreeNode_sphereObj == NULL)
67    OBBTreeNode_sphereObj = gluNewQuadric();
68
69  this->owner = NULL;
70
71  /* debug ids */
72  if( this->nodePrev)
73    this->treeIndex = 100 * this->depth + this->nodePrev->getID();
74  else
75    this->treeIndex = 0;
76}
77
78
79/**
80 *  standard deconstructor
81 */
82OBBTreeNode::~OBBTreeNode ()
83{
84  if( this->nodeLeft)
85    delete this->nodeLeft;
86  if( this->nodeRight)
87    delete this->nodeRight;
88
89  if( this->bvElement)
90    delete this->bvElement;
91
92//   if( this->triangleIndexList1 != NULL)
93//     delete [] this->triangleIndexList1;
94//   if( this->triangleIndexList2 != NULL)
95//     delete [] this->triangleIndexList2;
96}
97
98
99/**
100 *  creates a new BVTree or BVTree partition
101 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
102 * @param modInfo: model informations from the abstrac model
103 *
104 * this function creates the Bounding Volume tree from a modelInfo struct and bases its calculations
105 * on the triangle informations (triangle soup not polygon soup)
106 */
107void OBBTreeNode::spawnBVTree(const modelInfo& modelInf, const int* triangleIndexes, int length)
108{
109  PRINTF(3)("\n==============================Creating OBB Tree Node==================\n");
110  PRINT(3)(" OBB Tree Infos: \n");
111  PRINT(3)("\tDepth: %i \n\tTree Index: %i \n\tNumber of Triangles: %i\n", depth, this->treeIndex, length);
112  this->depth = depth;
113
114  this->bvElement = new OBB();
115  this->bvElement->modelInf = &modelInf;
116  this->bvElement->triangleIndexes = triangleIndexes;
117  this->bvElement->triangleIndexesLength = length;
118
119  /* create the bounding boxes in three steps */
120  this->calculateBoxCovariance(*this->bvElement, modelInf, triangleIndexes, length);
121  this->calculateBoxEigenvectors(*this->bvElement, modelInf, triangleIndexes, length);
122  this->calculateBoxAxis(*this->bvElement, modelInf, triangleIndexes, length);
123
124  /* do we need to descent further in the obb tree?*/
125  if( likely( this->depth > 0))
126  {
127    this->forkBox(*this->bvElement);
128
129    if( this->triangleIndexLength1 >= 3)
130    {
131      this->nodeLeft = new OBBTreeNode(*this->obbTree, this, depth - 1);
132      this->nodeLeft->spawnBVTree(modelInf, this->triangleIndexList1, this->triangleIndexLength1);
133    }
134    if( this->triangleIndexLength2 >= 3)
135    {
136      this->nodeRight = new OBBTreeNode(*this->obbTree, this, depth - 1);
137      this->nodeRight->spawnBVTree(modelInf, this->triangleIndexList2, this->triangleIndexLength2);
138    }
139  }
140}
141
142
143
144/**
145 *  calculate the box covariance matrix
146 * @param box: reference to the box
147 * @param modelInf: the model info structure of the model
148 * @param tirangleIndexes: an array with the indexes of the triangles inside this
149 * @param length: the length of the indexes array
150 */
151void OBBTreeNode::calculateBoxCovariance(OBB& box, const modelInfo& modelInf, const int* triangleIndexes, int length)
152{
153  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
154  float     face = 0.0f;                             //!< surface area of the entire convex hull
155  Vector    centroid[length];                        //!< centroid of the i'th convex hull
156  Vector    center;                                  //!< the center of the entire hull
157  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
158  Vector    t1, t2;                                  //!< temporary values
159  float     covariance[3][3] = {0,0,0, 0,0,0, 0,0,0};//!< the covariance matrix
160  sVec3D*   tmpVec = NULL;                           //!< a temp saving place for sVec3Ds
161
162
163  /* fist compute all the convex hull face/facelets and centroids */
164  for( int i = 0; i < length ; ++i)
165  {
166    tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[0]]);
167    p = *tmpVec;
168    tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[1]]);
169    q = *tmpVec;
170    tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[2]]);
171    r = *tmpVec;
172
173    /* finding the facelet surface via cross-product */
174    t1 = p - q;
175    t2 = p - r;
176    facelet[i] = 0.5f * /*fabs*/( t1.cross(t2).len() );
177    /* update the entire convex hull surface */
178    face += facelet[i];
179
180    /* calculate the cetroid of the hull triangles */
181    centroid[i] = (p + q + r) / 3.0f;
182    /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
183    center += centroid[i] * facelet[i];
184    /* the arithmetical center */
185  }
186  /* take the average of the centroid sum */
187  center /= face;
188
189
190  /* now calculate the covariance matrix - if not written in three for-loops,
191     it would compute faster: minor */
192  for( int j = 0; j < 3; ++j)
193  {
194    for( int k = 0; k < 3; ++k)
195    {
196      for( int i = 0; i < length; ++i)
197      {
198        tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[0]]);
199        p = *tmpVec;
200        tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[1]]);
201        q = *tmpVec;
202        tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[2]]);
203        r = *tmpVec;
204
205        covariance[j][k] = facelet[i] * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
206                           q[j] * q[k] + r[j] * r[k]);
207      }
208      covariance[j][k] = covariance[j][k] / (12.0f * face) - center[j] * center[k];
209    }
210  }
211  for( int i = 0; i < 3; ++i)
212  {
213    box.covarianceMatrix[i][0] = covariance[i][0];
214    box.covarianceMatrix[i][1] = covariance[i][1];
215    box.covarianceMatrix[i][2] = covariance[i][2];
216  }
217  box.center = center;
218
219
220  std::vector<int>           vertIndexVector;                           //!< vertex indexes list
221  int                        vertIndex;                                 //!< index to vertex
222  bool                       vertexFound;                               //!< vertex found flag
223  Vector                     arithCenter;                               //!< aritmetical center
224
225
226  /* debug output section*/
227  PRINTF(3)("\nOBB Covariance Matrix:\n");
228  for(int j = 0; j < 3; ++j)
229  {
230    PRINT(3)("\t\t");
231    for(int k = 0; k < 3; ++k)
232    {
233      PRINT(3)("%11.4f\t", covariance[j][k]);
234    }
235    PRINT(3)("\n");
236  }
237  PRINTF(3)("\nWeighteed OBB Center:\n\t\t%11.4f\t %11.4f\t %11.4f\n", center.x, center.y, center.z);
238//   PRINTF(3)("\nArithmetical OBB Center:\n\t\t%11.4f\t %11.4f\t %11.4f\n", box.arithCenter.x, box.arithCenter.y, box.arithCenter.z);
239
240  /* write back the covariance matrix data to the object oriented bouning box */
241}
242
243
244
245/**
246 *  calculate the eigenvectors for the object oriented box
247 * @param box: reference to the box
248 * @param modelInf: the model info structure of the model
249 * @param tirangleIndexes: an array with the indexes of the triangles inside this
250 * @param length: the length of the indexes array
251 */
252void OBBTreeNode::calculateBoxEigenvectors(OBB& box, const modelInfo& modelInf,
253    const int* triangleIndexes, int length)
254{
255
256  Vector         axis[3];                            //!< the references to the obb axis
257  Matrix         covMat(  box.covarianceMatrix  );   //!< covariance matrix (in the matrix dataform)
258
259  /*
260  now getting spanning vectors of the sub-space:
261  the eigenvectors of a symmertric matrix, such as the
262  covarience matrix are mutually orthogonal.
263  after normalizing them, they can be used as a the basis
264  vectors
265  */
266
267  /* calculate the axis */
268  covMat.getEigenVectors(axis[0], axis[1], axis[2] );
269  box.axis[0] = axis[0];
270  box.axis[1] = axis[1];
271  box.axis[2] = axis[2];
272
273  PRINTF(3)("Eigenvectors:\n");
274  PRINT(3)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[0].x, box.axis[0].y, box.axis[0].z);
275  PRINT(3)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[1].x, box.axis[1].y, box.axis[1].z);
276  PRINT(3)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[2].x, box.axis[2].y, box.axis[2].z);
277}
278
279
280
281
282/**
283 *  calculate the eigenvectors for the object oriented box
284 * @param box: reference to the box
285 * @param modelInf: the model info structure of the model
286 * @param tirangleIndexes: an array with the indexes of the triangles inside this
287 * @param length: the length of the indexes array
288 */
289void OBBTreeNode::calculateBoxAxis(OBB& box, const modelInfo& modelInf, const int* triangleIndexes, int length)
290{
291
292  PRINTF(3)("Calculate Box Axis\n");
293  /* now get the axis length */
294  Line                ax[3];                                 //!< the axis
295  float               halfLength[3];                         //!< half length of the axis
296  float               tmpLength;                             //!< tmp save point for the length
297  Plane               p0(box.axis[0], box.center);           //!< the axis planes
298  Plane               p1(box.axis[1], box.center);           //!< the axis planes
299  Plane               p2(box.axis[2], box.center);           //!< the axis planes
300  float               maxLength[3];                          //!< maximal lenth of the axis
301  float               minLength[3];                          //!< minimal length of the axis
302  const sVec3D*       tmpVec;                                //!< variable taking tmp vectors
303
304
305  /* get the maximal dimensions of the body in all directions */
306  /* for the initialisation the value just has to be inside of the polygon soup -> first vertices (rand) */
307  tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[0]].indexToVertices[0]]);
308  maxLength[0] = p0.distancePoint(*tmpVec);
309  minLength[0] = p0.distancePoint(*tmpVec);
310  for( int j = 0; j < length; ++j)
311  {
312    for( int i = 0; i < 3; ++i)
313    {
314      tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]]);
315      tmpLength = p0.distancePoint(*tmpVec);
316      if( tmpLength > maxLength[0])
317        maxLength[0] = tmpLength;
318      else if( tmpLength < minLength[0])
319        minLength[0] = tmpLength;
320    }
321  }
322
323  /* for the initialisation the value just has to be inside of the polygon soup -> first vertices (rand) */
324  tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[0]].indexToVertices[0]]);
325  maxLength[1] = p1.distancePoint(*tmpVec);
326  minLength[1] = p1.distancePoint(*tmpVec);
327  for( int j = 0; j < length; ++j)
328  {
329    for( int i = 0; i < 3; ++i)
330    {
331      tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]]);
332      tmpLength = p1.distancePoint(*tmpVec);
333      if( tmpLength > maxLength[1])
334        maxLength[1] = tmpLength;
335      else if( tmpLength < minLength[1])
336        minLength[1] = tmpLength;
337    }
338  }
339
340  /* for the initialisation the value just has to be inside of the polygon soup -> first vertices (rand) */
341  tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[0]].indexToVertices[0]]);
342  maxLength[2] = p2.distancePoint(*tmpVec);
343  minLength[2] = p2.distancePoint(*tmpVec);
344  for( int j = 0; j < length; ++j)
345  {
346    for( int i = 0; i < 3; ++i)
347    {
348      tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]]);
349      tmpLength = p2.distancePoint(*tmpVec);
350      if( tmpLength > maxLength[2])
351        maxLength[2] = tmpLength;
352      else if( tmpLength < minLength[2])
353        minLength[2] = tmpLength;
354    }
355  }
356
357
358  /* calculate the real centre of the body by using the axis length */
359  float               centerOffset[3];
360
361  for( int i = 0; i < 3; ++i)
362  {
363    centerOffset[i] = (maxLength[i] + minLength[i]) / 2.0f;       // min length is negatie
364    box.halfLength[i] = (maxLength[i]- minLength[i]) / 2.0f;      // min length is negative
365  }
366  box.center.x += centerOffset[0];
367  box.center.y += centerOffset[1];
368  box.center.z += centerOffset[2];
369
370  PRINTF(3)("\n");
371  PRINT(3)("\tAxis halflength x: %11.2f (max: %11.2f, \tmin: %11.2f)\n", box.halfLength[0], maxLength[0], minLength[0]);
372  PRINT(3)("\tAxis halflength x: %11.2f (max: %11.2f, \tmin: %11.2f)\n", box.halfLength[1], maxLength[1], minLength[1]);
373  PRINT(3)("\tAxis halflength x: %11.2f (max: %11.2f, \tmin: %11.2f)\n", box.halfLength[2], maxLength[2], minLength[2]);
374
375
376//   box.halfLength[0] = halfLength[0];
377//   box.halfLength[1] = halfLength[1];
378//   box.halfLength[2] = halfLength[2];
379}
380
381
382
383/**
384 *  this separates an ob-box in the middle
385 * @param box: the box to separate
386 *
387 * this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
388 */
389void OBBTreeNode::forkBox(OBB& box)
390{
391
392  PRINTF(3)("Fork Box\n");
393  PRINTF(4)("Calculating the longest Axis\n");
394  /* get the longest axis of the box */
395  float               longestAxis = -1.0f;                 //!< the length of the longest axis
396  int                 longestAxisIndex = 0;                //!< this is the nr of the longest axis
397
398
399  /* now get the longest axis of the three exiting */
400  for( int i = 0; i < 3; ++i)
401  {
402    if( longestAxis < box.halfLength[i])
403    {
404      longestAxis = box.halfLength[i];
405      longestAxisIndex = i;
406    }
407  }
408  PRINTF(3)("\nLongest Axis is: Nr %i with a half-length of:%11.2f\n", longestAxisIndex, longestAxis);
409
410
411  PRINTF(4)("Separating along the longest axis\n");
412  /* get the closest vertex near the center */
413  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
414  float               tmpDist;                             //!< variable to save diverse distances temporarily
415  int                 vertexIndex;                         //!< index of the vertex near the center
416  Plane               middlePlane(box.axis[longestAxisIndex], box.center); //!< the middle plane
417  const sVec3D*       tmpVec;                              //!< temp simple 3D vector
418
419
420  /* now definin the separation plane through this specified nearest point and partition
421  the points depending on which side they are located
422  */
423  std::list<int>           partition1;                           //!< the vertex partition 1
424  std::list<int>           partition2;                           //!< the vertex partition 2
425  float*                   triangleCenter = new float[3];        //!< the center of the triangle
426  const float*             a;                                    //!< triangle  edge a
427  const float*             b;                                    //!< triangle  edge b
428  const float*             c;                                    //!< triangle  edge c
429
430
431  /* find the center of the box */
432  this->separationPlane = Plane(box.axis[longestAxisIndex], box.center);
433  this->sepPlaneCenter[0] = box.center.x;
434  this->sepPlaneCenter[1] = box.center.y;
435  this->sepPlaneCenter[2] = box.center.z;
436  this->longestAxisIndex = longestAxisIndex;
437
438  for( int i = 0; i < box.triangleIndexesLength; ++i)
439  {
440    /* first calculate the middle of the triangle */
441    a = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[0]];
442    b = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[1]];
443    c = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[2]];
444
445    triangleCenter[0] = (a[0] + b[0] + c[0]) / 3.0f;
446    triangleCenter[1] = (a[1] + b[1] + c[1]) / 3.0f;
447    triangleCenter[2] = (a[2] + b[2] + c[2]) / 3.0f;
448    tmpDist = this->separationPlane.distancePoint(*((sVec3D*)triangleCenter));
449
450    if( tmpDist > 0.0f)
451      partition1.push_back(box.triangleIndexes[i]); /* positive numbers plus zero */
452    else if( tmpDist < 0.0f)
453      partition2.push_back(box.triangleIndexes[i]); /* negatice numbers */
454    else {
455      partition1.push_back(box.triangleIndexes[i]); /* 0.0f? unprobable... */
456      partition2.push_back(box.triangleIndexes[i]);
457    }
458  }
459  PRINTF(3)("\nPartition1: got \t%i Vertices \nPartition2: got \t%i Vertices\n", partition1.size(), partition2.size());
460
461
462  /* now comes the separation into two different sVec3D arrays */
463  int                index;                                //!< index storage place
464  int*               triangleIndexList1;                   //!< the vertex list 1
465  int*               triangleIndexList2;                   //!< the vertex list 2
466  std::list<int>::iterator element;                        //!< the list iterator
467
468  triangleIndexList1 = new int[partition1.size()];
469  triangleIndexList2 = new int[partition2.size()];
470
471  for( element = partition1.begin(), index = 0; element != partition1.end(); element++, index++)
472    triangleIndexList1[index] = (*element);
473
474  for( element = partition2.begin(), index = 0; element != partition2.end(); element++, index++)
475    triangleIndexList2[index] = (*element);
476
477  if( this->triangleIndexList1!= NULL)
478    delete[] this->triangleIndexList1;
479  this->triangleIndexList1 = triangleIndexList1;
480  this->triangleIndexLength1 = partition1.size();
481
482  if( this->triangleIndexList2 != NULL)
483    delete[] this->triangleIndexList2;
484  this->triangleIndexList2 = triangleIndexList2;
485  this->triangleIndexLength2 = partition2.size();
486}
487
488
489
490
491void OBBTreeNode::collideWith(BVTreeNode* treeNode, WorldEntity* nodeA, WorldEntity* nodeB)
492{
493  if( unlikely(treeNode == NULL))
494    return;
495
496  PRINTF(3)("collideWith\n");
497  /* if the obb overlap, make subtests: check which node is realy overlaping  */
498  PRINTF(3)("Checking OBB %i vs %i: ", this->getIndex(), treeNode->getIndex());
499  //   if( unlikely(treeNode == NULL)) return;
500
501
502  if( this->overlapTest(*this->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
503  {
504    PRINTF(3)("collision @ lvl %i, object %s vs. %s, (%p, %p)\n", this->depth, nodeA->getClassName(), nodeB->getClassName(), this->nodeLeft, this->nodeRight);
505
506    /* check if left node overlaps */
507    if( likely( this->nodeLeft != NULL))
508    {
509      PRINTF(3)("Checking OBB %i vs %i: ", this->nodeLeft->getIndex(), treeNode->getIndex());
510      if( this->overlapTest(*this->nodeLeft->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
511      {
512        this->nodeLeft->collideWith((((const OBBTreeNode*)treeNode)->nodeLeft), nodeA, nodeB);
513        this->nodeLeft->collideWith((((const OBBTreeNode*)treeNode)->nodeRight), nodeA, nodeB);
514      }
515    }
516    /* check if right node overlaps */
517    if( likely( this->nodeRight != NULL))
518    {
519      PRINTF(3)("Checking OBB %i vs %i: ", this->nodeRight->getIndex(), treeNode->getIndex());
520      if(this->overlapTest(*this->nodeRight->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
521      {
522        this->nodeRight->collideWith((((const OBBTreeNode*)treeNode)->nodeLeft), nodeA, nodeB);
523        this->nodeRight->collideWith((((const OBBTreeNode*)treeNode)->nodeRight), nodeA, nodeB);
524      }
525    }
526
527    /* so there is a collision and this is the last box in the tree (i.e. leaf) */
528    /* FIXME: If we would choose || insead of && there would also be asymmetrical cases supported */
529    if( unlikely(this->nodeRight == NULL && this->nodeLeft == NULL))
530    {
531      nodeA->collidesWith(nodeB, (((const OBBTreeNode*)&treeNode)->bvElement->center));
532
533      nodeB->collidesWith(nodeA, this->bvElement->center);
534    }
535
536  }
537}
538
539
540
541bool OBBTreeNode::overlapTest(OBB& boxA, OBB& boxB, WorldEntity* nodeA, WorldEntity* nodeB)
542{
543  //HACK remove this again
544  this->owner = nodeA;
545  //   if( boxB == NULL || boxA == NULL)
546  //     return false;
547
548  /* first check all axis */
549  Vector t;
550  float rA = 0.0f;
551  float rB = 0.0f;
552  Vector l;
553  Vector rotAxisA[3];
554  Vector rotAxisB[3];
555
556  rotAxisA[0] =  nodeA->getAbsDir().apply(boxA.axis[0]);
557  rotAxisA[1] =  nodeA->getAbsDir().apply(boxA.axis[1]);
558  rotAxisA[2] =  nodeA->getAbsDir().apply(boxA.axis[2]);
559
560  rotAxisB[0] =  nodeB->getAbsDir().apply(boxB.axis[0]);
561  rotAxisB[1] =  nodeB->getAbsDir().apply(boxB.axis[1]);
562  rotAxisB[2] =  nodeB->getAbsDir().apply(boxB.axis[2]);
563
564
565  t = nodeA->getAbsCoor() + nodeA->getAbsDir().apply(boxA.center) - ( nodeB->getAbsCoor() + nodeB->getAbsDir().apply(boxB.center));
566
567  //   printf("\n");
568  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[0].x, boxA->axis[0].y, boxA->axis[0].z, rotAxisA[0].x, rotAxisA[0].y, rotAxisA[0].z);
569  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[1].x, boxA->axis[1].y, boxA->axis[1].z, rotAxisA[1].x, rotAxisA[1].y, rotAxisA[1].z);
570  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[2].x, boxA->axis[2].y, boxA->axis[2].z, rotAxisA[2].x, rotAxisA[2].y, rotAxisA[2].z);
571  //
572  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[0].x, boxB->axis[0].y, boxB->axis[0].z, rotAxisB[0].x, rotAxisB[0].y, rotAxisB[0].z);
573  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[1].x, boxB->axis[1].y, boxB->axis[1].z, rotAxisB[1].x, rotAxisB[1].y, rotAxisB[1].z);
574  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[2].x, boxB->axis[2].y, boxB->axis[2].z, rotAxisB[2].x, rotAxisB[2].y, rotAxisB[2].z);
575
576
577  /* All 3 axis of the object A */
578  for( int j = 0; j < 3; ++j)
579  {
580    rA = 0.0f;
581    rB = 0.0f;
582    l = rotAxisA[j];
583
584    rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
585    rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
586    rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
587
588    rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
589    rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
590    rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
591
592    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
593
594    if( (rA + rB) < fabs(t.dot(l)))
595    {
596      PRINTF(3)("no Collision\n");
597      return false;
598    }
599  }
600
601  /* All 3 axis of the object B */
602  for( int j = 0; j < 3; ++j)
603  {
604    rA = 0.0f;
605    rB = 0.0f;
606    l = rotAxisB[j];
607
608    rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
609    rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
610    rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
611
612    rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
613    rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
614    rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
615
616    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
617
618    if( (rA + rB) < fabs(t.dot(l)))
619    {
620      PRINTF(3)("no Collision\n");
621      return false;
622    }
623  }
624
625
626  /* Now check for all face cross products */
627
628  for( int j = 0; j < 3; ++j)
629  {
630    for(int k = 0; k < 3; ++k )
631    {
632      rA = 0.0f;
633      rB = 0.0f;
634      l = rotAxisA[j].cross(rotAxisB[k]);
635
636      rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
637      rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
638      rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
639
640      rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
641      rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
642      rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
643
644      PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
645
646      if( (rA + rB) < fabs(t.dot(l)))
647      {
648        PRINTF(3)("keine Kollision\n");
649        return false;
650      }
651    }
652  }
653
654  /* FIXME: there is no collision mark set now */
655     boxA.bCollided = true; /* use this ONLY(!!!!) for drawing operations */
656     boxB.bCollided = true;
657
658
659  PRINTF(3)("Kollision!\n");
660  return true;
661}
662
663
664
665
666
667
668
669
670
671
672/**
673 *
674 * draw the BV tree - debug mode
675 */
676void OBBTreeNode::drawBV(int depth, int drawMode, const Vector& color,  bool top) const
677{
678  /* this function can be used to draw the triangles and/or the points only  */
679  if( drawMode & DRAW_MODEL || drawMode & DRAW_ALL)
680  {
681    if( !(drawMode & DRAW_SINGLE && depth != 0))
682    {
683      if( drawMode & DRAW_POINTS)
684      {
685        glBegin(GL_POINTS);
686        for( int i = 0; i < this->bvElement->modelInf->numVertices*3; i+=3)
687          glVertex3f(this->bvElement->modelInf->pVertices[i],
688                     this->bvElement->modelInf->pVertices[i+1],
689                     this->bvElement->modelInf->pVertices[i+2]);
690        glEnd();
691      }
692    }
693  }
694
695  if (top)
696  {
697    glPushAttrib(GL_ENABLE_BIT);
698    glDisable(GL_LIGHTING);
699    glDisable(GL_TEXTURE_2D);
700  }
701  glColor3f(color.x, color.y, color.z);
702
703
704  /* draw world axes */
705  if( drawMode & DRAW_BV_AXIS)
706  {
707    glBegin(GL_LINES);
708    glColor3f(1.0, 0.0, 0.0);
709    glVertex3f(0.0, 0.0, 0.0);
710    glVertex3f(3.0, 0.0, 0.0);
711
712    glColor3f(0.0, 1.0, 0.0);
713    glVertex3f(0.0, 0.0, 0.0);
714    glVertex3f(0.0, 3.0, 0.0);
715
716    glColor3f(0.0, 0.0, 1.0);
717    glVertex3f(0.0, 0.0, 0.0);
718    glVertex3f(0.0, 0.0, 3.0);
719    glEnd();
720  }
721
722
723  if( drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL)
724  {
725    if( drawMode & DRAW_SINGLE && depth != 0)
726    {
727      /* draw the obb axes */
728      glBegin(GL_LINES);
729      glColor3f(1.0, 0.0, 0.0);
730      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
731      glVertex3f(this->bvElement->center.x + this->bvElement->axis[0].x * this->bvElement->halfLength[0],
732                 this->bvElement->center.y + this->bvElement->axis[0].y * this->bvElement->halfLength[0],
733                 this->bvElement->center.z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]);
734
735      glColor3f(0.0, 1.0, 0.0);
736      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
737      glVertex3f(this->bvElement->center.x + this->bvElement->axis[1].x * this->bvElement->halfLength[1],
738                 this->bvElement->center.y + this->bvElement->axis[1].y * this->bvElement->halfLength[1],
739                 this->bvElement->center.z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]);
740
741      glColor3f(0.0, 0.0, 1.0);
742      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
743      glVertex3f(this->bvElement->center.x + this->bvElement->axis[2].x * this->bvElement->halfLength[2],
744                 this->bvElement->center.y + this->bvElement->axis[2].y * this->bvElement->halfLength[2],
745                 this->bvElement->center.z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]);
746      glEnd();
747    }
748  }
749
750
751  /* DRAW POLYGONS */
752  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL || drawMode & DRAW_BV_BLENDED)
753  {
754    if (top)
755    {
756      glEnable(GL_BLEND);
757      glBlendFunc(GL_SRC_ALPHA, GL_ONE);
758    }
759
760    if( this->nodeLeft == NULL && this->nodeRight == NULL)
761      depth = 0;
762
763    if( depth == 0 /*!(drawMode & DRAW_SINGLE && depth != 0)*/)
764    {
765
766
767      Vector cen = this->bvElement->center;
768      Vector* axis = this->bvElement->axis;
769      float* len = this->bvElement->halfLength;
770
771      if( this->bvElement->bCollided)
772      {
773        glColor4f(1.0, 1.0, 1.0, .5); // COLLISION COLOR
774      }
775      else if( drawMode & DRAW_BV_BLENDED)
776      {
777        glColor4f(color.x, color.y, color.z, .5);
778      }
779
780      // debug out
781      if( this->obbTree->getOwner() != NULL)
782      {
783        PRINTF(4)("debug poly draw: depth: %i, mode: %i, entity-name: %s, class: %s\n", depth, drawMode, this->obbTree->getOwner()->getName(), this->obbTree->getOwner()->getClassName());
784      }
785      else
786        PRINTF(4)("debug poly draw: depth: %i, mode: %i\n", depth, drawMode);
787
788
789      /* draw bounding box */
790      if( drawMode & DRAW_BV_BLENDED)
791        glBegin(GL_QUADS);
792      else
793        glBegin(GL_LINE_LOOP);
794      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
795                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
796                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
797      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
798                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
799                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
800      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
801                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
802                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
803      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
804                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
805                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
806      glEnd();
807
808      if( drawMode & DRAW_BV_BLENDED)
809        glBegin(GL_QUADS);
810      else
811        glBegin(GL_LINE_LOOP);
812      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
813                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
814                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
815      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
816                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
817                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
818      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
819                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
820                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
821      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
822                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
823                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
824      glEnd();
825
826      if( drawMode & DRAW_BV_BLENDED)
827        glBegin(GL_QUADS);
828      else
829        glBegin(GL_LINE_LOOP);
830      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
831                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
832                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
833      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
834                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
835                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
836      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
837                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
838                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
839      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
840                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
841                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
842      glEnd();
843
844      if( drawMode & DRAW_BV_BLENDED)
845        glBegin(GL_QUADS);
846      else
847        glBegin(GL_LINE_LOOP);
848      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
849                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
850                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
851      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
852                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
853                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
854      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
855                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
856                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
857      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
858                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
859                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
860      glEnd();
861
862
863      if( drawMode & DRAW_BV_BLENDED)
864      {
865        glBegin(GL_QUADS);
866        glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
867                   cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
868                   cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
869        glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
870                   cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
871                   cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
872        glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
873                   cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
874                   cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
875        glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
876                   cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
877                   cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
878        glEnd();
879
880        glBegin(GL_QUADS);
881        glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
882                   cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
883                   cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
884        glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
885                   cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
886                   cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
887        glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
888                   cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
889                   cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
890        glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
891                   cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
892                   cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
893        glEnd();
894      }
895
896      if( drawMode & DRAW_BV_BLENDED)
897        glColor3f(color.x, color.y, color.z);
898    }
899  }
900
901  /* DRAW SEPARATING PLANE */
902  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
903  {
904    if( !(drawMode & DRAW_SINGLE && depth != 0))
905    {
906      if( drawMode & DRAW_BV_BLENDED)
907        glColor4f(color.x, color.y, color.z, .6);
908
909      /* now draw the separation plane */
910      Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3];
911      Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3];
912      Vector c = this->bvElement->center;
913      float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
914      float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
915      glBegin(GL_QUADS);
916      glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
917      glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
918      glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
919      glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
920      glEnd();
921
922      if( drawMode & DRAW_BV_BLENDED)
923        glColor4f(color.x, color.y, color.z, 1.0);
924
925    }
926  }
927
928
929
930  if (depth > 0)
931  {
932    if( this->nodeLeft != NULL)
933      this->nodeLeft->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(15.0,0.0,0.0)), false);
934    if( this->nodeRight != NULL)
935      this->nodeRight->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(30.0,0.0,0.0)), false);
936  }
937  this->bvElement->bCollided = false;
938
939  if (top)
940    glPopAttrib();
941}
942
943
944
945void OBBTreeNode::debug() const
946{
947  PRINT(0)("========OBBTreeNode::debug()=====\n");
948  PRINT(0)(" Current depth: %i", this->depth);
949  PRINT(0)(" ");
950  PRINT(0)("=================================\n");
951}
Note: See TracBrowser for help on using the repository browser.