1 | /* |
---|
2 | orxonox - the future of 3D-vertical-scrollers |
---|
3 | |
---|
4 | Copyright (C) 2004 orx |
---|
5 | |
---|
6 | This program is free software; you can redistribute it and/or modify |
---|
7 | it under the terms of the GNU General Public License as published by |
---|
8 | the Free Software Foundation; either version 2, or (at your option) |
---|
9 | any later version. |
---|
10 | |
---|
11 | ### File Specific: |
---|
12 | main-programmer: Christian Meyer |
---|
13 | co-programmer: Patrick Boenzli |
---|
14 | */ |
---|
15 | |
---|
16 | #define DEBUG_SPECIAL_MODULE DEBUG_MODULE_MATH |
---|
17 | |
---|
18 | #include "plane.h" |
---|
19 | #ifdef DEBUG |
---|
20 | #include "debug.h" |
---|
21 | #else |
---|
22 | #include <stdio.h> |
---|
23 | #define PRINT(x) printf |
---|
24 | #endif |
---|
25 | |
---|
26 | using namespace std; |
---|
27 | |
---|
28 | /** |
---|
29 | * create a rotation from a vector |
---|
30 | * @param v: a vector |
---|
31 | */ |
---|
32 | Rotation::Rotation (const Vector& v) |
---|
33 | { |
---|
34 | Vector x = Vector( 1, 0, 0); |
---|
35 | Vector axis = x.cross( v); |
---|
36 | axis.normalize(); |
---|
37 | float angle = angleRad( x, v); |
---|
38 | float ca = cos(angle); |
---|
39 | float sa = sin(angle); |
---|
40 | m[0] = 1.0f+(1.0f-ca)*(axis.x*axis.x-1.0f); |
---|
41 | m[1] = -axis.z*sa+(1.0f-ca)*axis.x*axis.y; |
---|
42 | m[2] = axis.y*sa+(1.0f-ca)*axis.x*axis.z; |
---|
43 | m[3] = axis.z*sa+(1.0f-ca)*axis.x*axis.y; |
---|
44 | m[4] = 1.0f+(1.0f-ca)*(axis.y*axis.y-1.0f); |
---|
45 | m[5] = -axis.x*sa+(1.0f-ca)*axis.y*axis.z; |
---|
46 | m[6] = -axis.y*sa+(1.0f-ca)*axis.x*axis.z; |
---|
47 | m[7] = axis.x*sa+(1.0f-ca)*axis.y*axis.z; |
---|
48 | m[8] = 1.0f+(1.0f-ca)*(axis.z*axis.z-1.0f); |
---|
49 | } |
---|
50 | |
---|
51 | /** |
---|
52 | * creates a rotation from an axis and an angle (radians!) |
---|
53 | * @param axis: the rotational axis |
---|
54 | * @param angle: the angle in radians |
---|
55 | */ |
---|
56 | Rotation::Rotation (const Vector& axis, float angle) |
---|
57 | { |
---|
58 | float ca, sa; |
---|
59 | ca = cos(angle); |
---|
60 | sa = sin(angle); |
---|
61 | m[0] = 1.0f+(1.0f-ca)*(axis.x*axis.x-1.0f); |
---|
62 | m[1] = -axis.z*sa+(1.0f-ca)*axis.x*axis.y; |
---|
63 | m[2] = axis.y*sa+(1.0f-ca)*axis.x*axis.z; |
---|
64 | m[3] = axis.z*sa+(1.0f-ca)*axis.x*axis.y; |
---|
65 | m[4] = 1.0f+(1.0f-ca)*(axis.y*axis.y-1.0f); |
---|
66 | m[5] = -axis.x*sa+(1.0f-ca)*axis.y*axis.z; |
---|
67 | m[6] = -axis.y*sa+(1.0f-ca)*axis.x*axis.z; |
---|
68 | m[7] = axis.x*sa+(1.0f-ca)*axis.y*axis.z; |
---|
69 | m[8] = 1.0f+(1.0f-ca)*(axis.z*axis.z-1.0f); |
---|
70 | } |
---|
71 | |
---|
72 | /** |
---|
73 | * creates a rotation from euler angles (pitch/yaw/roll) |
---|
74 | * @param pitch: rotation around z (in radians) |
---|
75 | * @param yaw: rotation around y (in radians) |
---|
76 | * @param roll: rotation around x (in radians) |
---|
77 | */ |
---|
78 | Rotation::Rotation ( float pitch, float yaw, float roll) |
---|
79 | { |
---|
80 | float cy, sy, cr, sr, cp, sp; |
---|
81 | cy = cos(yaw); |
---|
82 | sy = sin(yaw); |
---|
83 | cr = cos(roll); |
---|
84 | sr = sin(roll); |
---|
85 | cp = cos(pitch); |
---|
86 | sp = sin(pitch); |
---|
87 | m[0] = cy*cr; |
---|
88 | m[1] = -cy*sr; |
---|
89 | m[2] = sy; |
---|
90 | m[3] = cp*sr+sp*sy*cr; |
---|
91 | m[4] = cp*cr-sp*sr*sy; |
---|
92 | m[5] = -sp*cy; |
---|
93 | m[6] = sp*sr-cp*sy*cr; |
---|
94 | m[7] = sp*cr+cp*sy*sr; |
---|
95 | m[8] = cp*cy; |
---|
96 | } |
---|
97 | |
---|
98 | /** |
---|
99 | * creates a nullrotation (an identity rotation) |
---|
100 | */ |
---|
101 | Rotation::Rotation () |
---|
102 | { |
---|
103 | m[0] = 1.0f; |
---|
104 | m[1] = 0.0f; |
---|
105 | m[2] = 0.0f; |
---|
106 | m[3] = 0.0f; |
---|
107 | m[4] = 1.0f; |
---|
108 | m[5] = 0.0f; |
---|
109 | m[6] = 0.0f; |
---|
110 | m[7] = 0.0f; |
---|
111 | m[8] = 1.0f; |
---|
112 | } |
---|
113 | |
---|
114 | /** |
---|
115 | * fills the specified buffer with a 4x4 glmatrix |
---|
116 | * @param buffer: Pointer to an array of 16 floats |
---|
117 | |
---|
118 | Use this to get the rotation in a gl-compatible format |
---|
119 | */ |
---|
120 | void Rotation::glmatrix (float* buffer) |
---|
121 | { |
---|
122 | buffer[0] = m[0]; |
---|
123 | buffer[1] = m[3]; |
---|
124 | buffer[2] = m[6]; |
---|
125 | buffer[3] = m[0]; |
---|
126 | buffer[4] = m[1]; |
---|
127 | buffer[5] = m[4]; |
---|
128 | buffer[6] = m[7]; |
---|
129 | buffer[7] = m[0]; |
---|
130 | buffer[8] = m[2]; |
---|
131 | buffer[9] = m[5]; |
---|
132 | buffer[10] = m[8]; |
---|
133 | buffer[11] = m[0]; |
---|
134 | buffer[12] = m[0]; |
---|
135 | buffer[13] = m[0]; |
---|
136 | buffer[14] = m[0]; |
---|
137 | buffer[15] = m[1]; |
---|
138 | } |
---|
139 | |
---|
140 | /** |
---|
141 | * multiplies two rotational matrices |
---|
142 | * @param r: another Rotation |
---|
143 | * @return the matrix product of the Rotations |
---|
144 | |
---|
145 | Use this to rotate one rotation by another |
---|
146 | */ |
---|
147 | Rotation Rotation::operator* (const Rotation& r) |
---|
148 | { |
---|
149 | Rotation p; |
---|
150 | |
---|
151 | p.m[0] = m[0]*r.m[0] + m[1]*r.m[3] + m[2]*r.m[6]; |
---|
152 | p.m[1] = m[0]*r.m[1] + m[1]*r.m[4] + m[2]*r.m[7]; |
---|
153 | p.m[2] = m[0]*r.m[2] + m[1]*r.m[5] + m[2]*r.m[8]; |
---|
154 | |
---|
155 | p.m[3] = m[3]*r.m[0] + m[4]*r.m[3] + m[5]*r.m[6]; |
---|
156 | p.m[4] = m[3]*r.m[1] + m[4]*r.m[4] + m[5]*r.m[7]; |
---|
157 | p.m[5] = m[3]*r.m[2] + m[4]*r.m[5] + m[5]*r.m[8]; |
---|
158 | |
---|
159 | p.m[6] = m[6]*r.m[0] + m[7]*r.m[3] + m[8]*r.m[6]; |
---|
160 | p.m[7] = m[6]*r.m[1] + m[7]*r.m[4] + m[8]*r.m[7]; |
---|
161 | p.m[8] = m[6]*r.m[2] + m[7]*r.m[5] + m[8]*r.m[8]; |
---|
162 | |
---|
163 | return p; |
---|
164 | } |
---|
165 | |
---|
166 | |
---|
167 | /** |
---|
168 | * rotates the vector by the given rotation |
---|
169 | * @param v: a vector |
---|
170 | * @param r: a rotation |
---|
171 | * @return the rotated vector |
---|
172 | */ |
---|
173 | Vector rotateVector( const Vector& v, const Rotation& r) |
---|
174 | { |
---|
175 | Vector t; |
---|
176 | |
---|
177 | t.x = v.x * r.m[0] + v.y * r.m[1] + v.z * r.m[2]; |
---|
178 | t.y = v.x * r.m[3] + v.y * r.m[4] + v.z * r.m[5]; |
---|
179 | t.z = v.x * r.m[6] + v.y * r.m[7] + v.z * r.m[8]; |
---|
180 | |
---|
181 | return t; |
---|
182 | } |
---|
183 | |
---|
184 | /** |
---|
185 | * calculate the distance between two lines |
---|
186 | * @param l: the other line |
---|
187 | * @return the distance between the lines |
---|
188 | */ |
---|
189 | float Line::distance (const Line& l) const |
---|
190 | { |
---|
191 | float q, d; |
---|
192 | Vector n = a.cross(l.a); |
---|
193 | q = n.dot(r-l.r); |
---|
194 | d = n.len(); |
---|
195 | if( d == 0.0) return 0.0; |
---|
196 | return q/d; |
---|
197 | } |
---|
198 | |
---|
199 | /** |
---|
200 | * calculate the distance between a line and a point |
---|
201 | * @param v: the point |
---|
202 | * @return the distance between the Line and the point |
---|
203 | */ |
---|
204 | float Line::distancePoint (const Vector& v) const |
---|
205 | { |
---|
206 | Vector d = v-r; |
---|
207 | Vector u = a * d.dot( a); |
---|
208 | return (d - u).len(); |
---|
209 | } |
---|
210 | |
---|
211 | /** |
---|
212 | * calculate the distance between a line and a point |
---|
213 | * @param v: the point |
---|
214 | * @return the distance between the Line and the point |
---|
215 | */ |
---|
216 | float Line::distancePoint (const sVec3D& v) const |
---|
217 | { |
---|
218 | Vector s(v[0], v[1], v[2]); |
---|
219 | Vector d = s - r; |
---|
220 | Vector u = a * d.dot( a); |
---|
221 | return (d - u).len(); |
---|
222 | } |
---|
223 | |
---|
224 | |
---|
225 | /** |
---|
226 | * calculate the two points of minimal distance of two lines |
---|
227 | * @param l: the other line |
---|
228 | * @return a Vector[2] (!has to be deleted after use!) containing the two points of minimal distance |
---|
229 | */ |
---|
230 | Vector* Line::footpoints (const Line& l) const |
---|
231 | { |
---|
232 | Vector* fp = new Vector[2]; |
---|
233 | Plane p = Plane (r + a.cross(l.a), r, r + a); |
---|
234 | fp[1] = p.intersectLine (l); |
---|
235 | p = Plane (fp[1], l.a); |
---|
236 | fp[0] = p.intersectLine (*this); |
---|
237 | return fp; |
---|
238 | } |
---|
239 | |
---|
240 | /** |
---|
241 | \brief calculate the length of a line |
---|
242 | \return the lenght of the line |
---|
243 | */ |
---|
244 | float Line::len() const |
---|
245 | { |
---|
246 | return a.len(); |
---|
247 | } |
---|
248 | |
---|
249 | /** |
---|
250 | * rotate the line by given rotation |
---|
251 | * @param rot: a rotation |
---|
252 | */ |
---|
253 | void Line::rotate (const Rotation& rot) |
---|
254 | { |
---|
255 | Vector t = a + r; |
---|
256 | t = rotateVector( t, rot); |
---|
257 | r = rotateVector( r, rot), |
---|
258 | a = t - r; |
---|
259 | } |
---|
260 | |
---|
261 | /** |
---|
262 | * create a plane from three points |
---|
263 | * @param a: first point |
---|
264 | * @param b: second point |
---|
265 | * @param c: third point |
---|
266 | */ |
---|
267 | Plane::Plane (const Vector& a, const Vector& b, const Vector& c) |
---|
268 | { |
---|
269 | n = (a-b).cross(c-b); |
---|
270 | k = -(n.x*b.x+n.y*b.y+n.z*b.z); |
---|
271 | } |
---|
272 | |
---|
273 | /** |
---|
274 | * create a plane from anchor point and normal |
---|
275 | * @param norm: normal vector |
---|
276 | * @param p: anchor point |
---|
277 | */ |
---|
278 | Plane::Plane (const Vector& norm, const Vector& p) |
---|
279 | { |
---|
280 | n = norm; |
---|
281 | k = -(n.x*p.x+n.y*p.y+n.z*p.z); |
---|
282 | } |
---|
283 | |
---|
284 | |
---|
285 | /** |
---|
286 | * create a plane from anchor point and normal |
---|
287 | * @param norm: normal vector |
---|
288 | * @param p: anchor point |
---|
289 | */ |
---|
290 | Plane::Plane (const Vector& norm, const sVec3D& g) |
---|
291 | { |
---|
292 | Vector p(g[0], g[1], g[2]); |
---|
293 | n = norm; |
---|
294 | k = -(n.x*p.x+n.y*p.y+n.z*p.z); |
---|
295 | } |
---|
296 | |
---|
297 | |
---|
298 | /** |
---|
299 | * returns the intersection point between the plane and a line |
---|
300 | * @param l: a line |
---|
301 | */ |
---|
302 | Vector Plane::intersectLine (const Line& l) const |
---|
303 | { |
---|
304 | if (n.x*l.a.x+n.y*l.a.y+n.z*l.a.z == 0.0) return Vector(0,0,0); |
---|
305 | float t = (n.x*l.r.x+n.y*l.r.y+n.z*l.r.z+k) / (n.x*l.a.x+n.y*l.a.y+n.z*l.a.z); |
---|
306 | return l.r + (l.a * t); |
---|
307 | } |
---|
308 | |
---|
309 | /** |
---|
310 | * returns the distance between the plane and a point |
---|
311 | * @param p: a Point |
---|
312 | * @return the distance between the plane and the point (can be negative) |
---|
313 | */ |
---|
314 | float Plane::distancePoint (const Vector& p) const |
---|
315 | { |
---|
316 | float l = n.len(); |
---|
317 | if( l == 0.0) return 0.0; |
---|
318 | return (n.dot(p) + k) / n.len(); |
---|
319 | } |
---|
320 | |
---|
321 | |
---|
322 | /** |
---|
323 | * returns the distance between the plane and a point |
---|
324 | * @param p: a Point |
---|
325 | * @return the distance between the plane and the point (can be negative) |
---|
326 | */ |
---|
327 | // float Plane::distancePoint (const sVec3D& p) const |
---|
328 | // { |
---|
329 | // Vector s(p[0], p[1], p[2]); |
---|
330 | // float l = n.len(); |
---|
331 | // if( l == 0.0) return 0.0; |
---|
332 | // return (n.dot(s) + k) / n.len(); |
---|
333 | // } |
---|
334 | |
---|
335 | |
---|
336 | /** |
---|
337 | * returns the distance between the plane and a point |
---|
338 | * @param p: a Point |
---|
339 | * @return the distance between the plane and the point (can be negative) |
---|
340 | */ |
---|
341 | float Plane::distancePoint (const float* p) const |
---|
342 | { |
---|
343 | Vector s(p[0], p[1], p[2]); |
---|
344 | float l = n.len(); |
---|
345 | if( l == 0.0) return 0.0; |
---|
346 | return (n.dot(s) + k) / n.len(); |
---|
347 | } |
---|
348 | |
---|
349 | |
---|
350 | /** |
---|
351 | * returns the side a point is located relative to a Plane |
---|
352 | * @param p: a Point |
---|
353 | * @return 0 if the point is contained within the Plane, positive(negative) if the point is in the positive(negative) semi-space of the Plane |
---|
354 | */ |
---|
355 | float Plane::locatePoint (const Vector& p) const |
---|
356 | { |
---|
357 | return (n.dot(p) + k); |
---|
358 | } |
---|
359 | |
---|