/* orxonox - the future of 3D-vertical-scrollers Copyright (C) 2004 orx This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. ### File Specific: main-programmer: Benjamin Grauer co-programmer: Patrick Boenzli */ #include "matrix.h" #include #include int Matrix::getEigenValues(Vector& eigenValues) const { int retVal = -1; float a = 0; float b = 0; float c[3]; // c[0] is the determinante of mat c[0] = this->m11 * this->m22 * this->m33 + 2* this->m12 * this->m13 * this->m23 - this->m11 * this->m23 * this->m23 - this->m22 * this->m13 * this->m13 - this->m33 * this->m12 * this->m12; // c[1] is the trace of a c[1] = this->m11 * this->m22 - this->m12 * this->m12 + this->m11 * this->m33 - this->m13 * this->m13 + this->m22 * this->m33 - this->m23 * this->m23; // c[2] is the sum of the diagonal elements c[2] = this->m11 + this->m22 + this->m33; // Computing the roots: a = (3.0*c[1] - c[2]*c[2]) / 3.0; b = (-2.0*c[2]*c[2]*c[2] + 9.0*c[1]*c[2] - 27.0*c[0]) / 27.0; float Q = b*b/4.0 + a*a*a/27.0; // 3 distinct Roots if (Q < 0) { float psi = atan2(sqrt(-Q), -b/2.0); float p = sqrt((b/2.0)*(b/2.0) - Q); eigenValues.x = c[2]/3.0 + 2 * pow(p, 1/3.0) * cos(psi/3.0); eigenValues.y = c[2]/3.0 - pow(p, 1/3.0) * (cos(psi/3.0) + sqrt(3.0) * sin(psi/3.0)); eigenValues.z = c[2]/3.0 - pow(p, 1/3.0) * (cos(psi/3.0) - sqrt(3.0) * sin(psi/3.0)); retVal = 3; } // 2 Distinct Roots else if (Q == 0) { eigenValues.x = eigenValues.y = c[2]/3.0 + pow(b/2.0, 1.0/3.0); eigenValues.z = c[2]/3.0 + 2* pow(b/2.0, 1.0/3.0); retVal = 2; } // 1 Root (not calculating anything.) else if (Q > 0) { eigenValues.x = eigenValues.y = eigenValues.z = 1; retVal = 1; } return retVal; } void Matrix::getEigenVectors(Vector& eigVc1, Vector& eigVc2, Vector& eigVc3) const { Vector eigenValues; int eigenValuesCount = this->getEigenValues(eigenValues); if (eigenValuesCount == 2 || eigenValuesCount == 3) { /* eigenvec creation */ eigVc1.x = -1/this->m13*(this->m33 - eigenValues.x) + (this->m32*(-this->m31*this->m32 + this->m12*this->m33 - this->m12*eigenValues.x)) / this->m13*(-this->m13*this->m22 - this->m12*this->m23 + this->m13*eigenValues.x); eigVc1.y = -( -this->m13*this->m23 + this->m12*this->m33 - this->m12*eigenValues.x) / (-this->m31*this->m22 + this->m12*this->m23 + this->m13*eigenValues.x); eigVc1.z = 1.0f; eigVc2.x = -1/this->m13*(this->m33 - eigenValues.y) + (this->m32*(-this->m31*this->m32 + this->m12*this->m33 - this->m12*eigenValues.y)) / this->m13*(-this->m13*this->m22 - this->m12*this->m23 + this->m13*eigenValues.y); eigVc2.y = -( -this->m13*this->m23 + this->m12*this->m33 - this->m12*eigenValues.y) / (-this->m31*this->m22 + this->m12*this->m23 + this->m13*eigenValues.y); eigVc2.z = 1.0f; eigVc3 = eigVc1.cross(eigVc2); } else if (eigenValuesCount == 1) { eigVc1 = Vector(1,0,0); eigVc2 = Vector(0,1,0); eigVc3 = Vector(0,0,1); } eigVc1.normalize(); eigVc2.normalize(); eigVc3.normalize(); } void Matrix::debug() const { printf("| %f | %f | %f |\n", this->m11, this->m12, this->m13 ); printf("| %f | %f | %f |\n", this->m21, this->m22, this->m23 ); printf("| %f | %f | %f |\n", this->m31, this->m32, this->m33 ); }