1 | /* |
---|
2 | orxonox - the future of 3D-vertical-scrollers |
---|
3 | |
---|
4 | Copyright (C) 2004 orx |
---|
5 | |
---|
6 | This program is free software; you can redistribute it and/or modify |
---|
7 | it under the terms of the GNU General Public License as published by |
---|
8 | the Free Software Foundation; either version 2, or (at your option) |
---|
9 | any later version. |
---|
10 | |
---|
11 | ### File Specific: |
---|
12 | main-programmer: Benjamin Grauer |
---|
13 | co-programmer: Patrick Boenzli |
---|
14 | */ |
---|
15 | #include "matrix.h" |
---|
16 | |
---|
17 | #include <stdio.h> |
---|
18 | #include <math.h> |
---|
19 | |
---|
20 | |
---|
21 | int Matrix::getEigenValues(Vector& eigenValues) const |
---|
22 | { |
---|
23 | int retVal = -1; |
---|
24 | float a = 0; |
---|
25 | float b = 0; |
---|
26 | |
---|
27 | float c[3]; |
---|
28 | |
---|
29 | // c[0] is the determinante of mat |
---|
30 | c[0] = this->m11 * this->m22 * this->m33 + |
---|
31 | 2* this->m12 * this->m13 * this->m23 - |
---|
32 | this->m11 * this->m23 * this->m23 - |
---|
33 | this->m22 * this->m13 * this->m13 - |
---|
34 | this->m33 * this->m12 * this->m12; |
---|
35 | |
---|
36 | // c[1] is the trace of a |
---|
37 | c[1] = this->m11 * this->m22 - |
---|
38 | this->m12 * this->m12 + |
---|
39 | this->m11 * this->m33 - |
---|
40 | this->m13 * this->m13 + |
---|
41 | this->m22 * this->m33 - |
---|
42 | this->m23 * this->m23; |
---|
43 | |
---|
44 | // c[2] is the sum of the diagonal elements |
---|
45 | c[2] = this->m11 + |
---|
46 | this->m22 + |
---|
47 | this->m33; |
---|
48 | |
---|
49 | |
---|
50 | // Computing the roots: |
---|
51 | a = (3.0*c[1] - c[2]*c[2]) / 3.0; |
---|
52 | b = (-2.0*c[2]*c[2]*c[2] + 9.0*c[1]*c[2] - 27.0*c[0]) / 27.0; |
---|
53 | |
---|
54 | float Q = b*b/4.0 + a*a*a/27.0; |
---|
55 | |
---|
56 | // 3 distinct Roots |
---|
57 | if (Q < 0) |
---|
58 | { |
---|
59 | float psi = atan2(sqrt(-Q), -b/2.0); |
---|
60 | float p = sqrt((b/2.0)*(b/2.0) - Q); |
---|
61 | |
---|
62 | eigenValues.x = c[2]/3.0 + 2 * pow(p, 1/3.0) * cos(psi/3.0); |
---|
63 | eigenValues.y = c[2]/3.0 - pow(p, 1/3.0) * (cos(psi/3.0) |
---|
64 | + sqrt(3.0) * sin(psi/3.0)); |
---|
65 | eigenValues.z = c[2]/3.0 - pow(p, 1/3.0) * (cos(psi/3.0) |
---|
66 | - sqrt(3.0) * sin(psi/3.0)); |
---|
67 | retVal = 3; |
---|
68 | } |
---|
69 | // 2 Distinct Roots |
---|
70 | else if (Q == 0) |
---|
71 | { |
---|
72 | eigenValues.x = eigenValues.y = c[2]/3.0 + pow(b/2.0, 1.0/3.0); |
---|
73 | eigenValues.z = c[2]/3.0 + 2* pow(b/2.0, 1.0/3.0); |
---|
74 | retVal = 2; |
---|
75 | } |
---|
76 | // 1 Root (not calculating anything.) |
---|
77 | else if (Q > 0) |
---|
78 | { |
---|
79 | eigenValues.x = eigenValues.y = eigenValues.z = 1; |
---|
80 | retVal = 1; |
---|
81 | } |
---|
82 | return retVal; |
---|
83 | } |
---|
84 | |
---|
85 | void Matrix::getEigenVectors(Vector& eigVc1, Vector& eigVc2, Vector& eigVc3) const |
---|
86 | { |
---|
87 | Vector eigenValues; |
---|
88 | int eigenValuesCount = this->getEigenValues(eigenValues); |
---|
89 | |
---|
90 | if (eigenValuesCount == 2 || eigenValuesCount == 3) |
---|
91 | { |
---|
92 | /* eigenvec creation */ |
---|
93 | eigVc1.x = -1/this->m13*(this->m33 - eigenValues.x) + |
---|
94 | (this->m32*(-this->m31*this->m32 + this->m12*this->m33 - this->m12*eigenValues.x)) / |
---|
95 | this->m13*(-this->m13*this->m22 - this->m12*this->m23 + this->m13*eigenValues.x); |
---|
96 | |
---|
97 | eigVc1.y = -( -this->m13*this->m23 + this->m12*this->m33 - this->m12*eigenValues.x) / |
---|
98 | (-this->m31*this->m22 + this->m12*this->m23 + this->m13*eigenValues.x); |
---|
99 | |
---|
100 | eigVc1.z = 1.0f; |
---|
101 | |
---|
102 | eigVc2.x = -1/this->m13*(this->m33 - eigenValues.y) + |
---|
103 | (this->m32*(-this->m31*this->m32 + this->m12*this->m33 - this->m12*eigenValues.y)) / |
---|
104 | this->m13*(-this->m13*this->m22 - this->m12*this->m23 + this->m13*eigenValues.y); |
---|
105 | |
---|
106 | eigVc2.y = -( -this->m13*this->m23 + this->m12*this->m33 - this->m12*eigenValues.y) / |
---|
107 | (-this->m31*this->m22 + this->m12*this->m23 + this->m13*eigenValues.y); |
---|
108 | |
---|
109 | eigVc2.z = 1.0f; |
---|
110 | |
---|
111 | eigVc3 = eigVc1.cross(eigVc2); |
---|
112 | } |
---|
113 | else if (eigenValuesCount == 1) |
---|
114 | { |
---|
115 | eigVc1 = Vector(1,0,0); |
---|
116 | eigVc2 = Vector(0,1,0); |
---|
117 | eigVc3 = Vector(0,0,1); |
---|
118 | } |
---|
119 | eigVc1.normalize(); |
---|
120 | eigVc2.normalize(); |
---|
121 | eigVc3.normalize(); |
---|
122 | } |
---|
123 | |
---|
124 | void Matrix::debug() const |
---|
125 | { |
---|
126 | printf("| %f | %f | %f |\n", this->m11, this->m12, this->m13 ); |
---|
127 | printf("| %f | %f | %f |\n", this->m21, this->m22, this->m23 ); |
---|
128 | printf("| %f | %f | %f |\n", this->m31, this->m32, this->m33 ); |
---|
129 | |
---|
130 | } |
---|
131 | |
---|