/* orxonox - the future of 3D-vertical-scrollers Copyright (C) 2004 orx This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. ### File Specific: main-programmer: Patrick Boenzli */ #define DEBUG_SPECIAL_MODULE 3/* DEBUG_MODULE_COLLISION_DETECTION*/ #include "aabb_tree_node.h" #include "aabb.h" #include "bv_tree.h" #include "collision_tube.h" #include "matrix.h" #include "model.h" #include "world_entity.h" #include "plane.h" #include "color.h" #include "glincl.h" #include #include #include "debug.h" GLUquadricObj* AABBTreeNode_sphereObj = NULL; ObjectListDefinition(AABBTreeNode); /** * standard constructor * @param tree: reference to the obb tree * @param depth: the depth of the obb tree to generate */ AABBTreeNode::AABBTreeNode (const OBBTree& tree, AABBTreeNode* prev, int depth) : BVTreeNode() { this->registerObject(this, AABBTreeNode::_objectList); this->obbTree = &tree; this->nodePrev = prev; this->depth = depth; this->nextID = 0; this->init(); } /** * standard constructor * @param depth: the depth of the obb tree to generate */ AABBTreeNode::AABBTreeNode(int depth) { this->depth = depth; this->init(); } /** * init funciton */ void AABBTreeNode::init() { this->nodeLeft = NULL; this->nodeRight = NULL; this->bvElement = NULL; this->triangleIndexList1 = NULL; this->triangleIndexList2 = NULL; this->modelInf = NULL; this->triangleIndexes = NULL; if( AABBTreeNode_sphereObj == NULL) AABBTreeNode_sphereObj = gluNewQuadric(); this->owner = NULL; } /** * standard deconstructor */ AABBTreeNode::~AABBTreeNode () { if( this->nodeLeft) delete this->nodeLeft; if( this->nodeRight) delete this->nodeRight; if( this->bvElement) delete this->bvElement; } void AABBTreeNode::spawnBVTree(Model* model) { const modelInfo* modelInf = model->getModelInfo(); int* triangleIndexes = new int[modelInf->numTriangles]; for(unsigned int i = 0; i < modelInf->numTriangles; ++i) triangleIndexes[i] = i; this->spawnBVTree(*modelInf, triangleIndexes, modelInf->numTriangles); } /** * creates a new BVTree or BVTree partition * @param depth: how much more depth-steps to go: if == 1 don't go any deeper! * @param modInfo: model informations from the abstrac model * * this function creates the Bounding Volume tree from a modelInfo struct and bases its calculations * on the triangle informations (triangle soup not polygon soup) */ void AABBTreeNode::spawnBVTree(const modelInfo& modelInf, const int* triangleIndexes, int length) { PRINTF(4)("\n==============================Creating AABB Tree Node==================\n"); PRINT(4)(" AABB Tree Infos: \n"); PRINT(4)("\tDepth: %i \n\tTree Index: %i \n\tNumber of Triangles: %i\n", depth, this->treeIndex, length); this->depth = depth; this->bvElement = new AABB(); this->bvElement->modelInf = &modelInf; this->bvElement->triangleIndexes = triangleIndexes; this->bvElement->triangleIndexesLength = length; /* create the bounding boxes in three steps */ this->calculateBoxCovariance(*this->bvElement, modelInf, triangleIndexes, length); this->calculateBoxEigenvectors(*this->bvElement, modelInf, triangleIndexes, length); this->calculateBoxAxis(*this->bvElement, modelInf, triangleIndexes, length); /* do we need to descent further in the obb tree?*/ if( likely( this->depth > 0)) { this->forkBox(*this->bvElement); if( this->triangleIndexLength1 >= 3) { this->nodeLeft = new AABBTreeNode(*this->obbTree, this, depth - 1); this->nodeLeft->spawnBVTree(modelInf, this->triangleIndexList1, this->triangleIndexLength1); } if( this->triangleIndexLength2 >= 3) { this->nodeRight = new AABBTreeNode(*this->obbTree, this, depth - 1); this->nodeRight->spawnBVTree(modelInf, this->triangleIndexList2, this->triangleIndexLength2); } } } /** * calculate the box covariance matrix * @param box: reference to the box * @param modelInf: the model info structure of the model * @param tirangleIndexes: an array with the indexes of the triangles inside this * @param length: the length of the indexes array */ void AABBTreeNode::calculateBoxCovariance(AABB& box, const modelInfo& modelInf, const int* triangleIndexes, int length) { float facelet[length]; //!< surface area of the i'th triangle of the convex hull float face = 0.0f; //!< surface area of the entire convex hull Vector centroid[length]; //!< centroid of the i'th convex hull Vector center; //!< the center of the entire hull Vector p, q, r; //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d Vector t1, t2; //!< temporary values float covariance[3][3] = {{0,0,0}, {0,0,0}, {0,0,0}};//!< the covariance matrix /* fist compute all the convex hull face/facelets and centroids */ for( int i = 0; i < length ; ++i) { p = &modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[0]]; q = &modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[1]]; r = &modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[2]]; /* finding the facelet surface via cross-product */ t1 = p - q; t2 = p - r; facelet[i] = 0.5f * /*fabs*/( t1.cross(t2).len() ); /* update the entire convex hull surface */ face += facelet[i]; /* calculate the cetroid of the hull triangles */ centroid[i] = (p + q + r) / 3.0f; /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */ center += centroid[i] * facelet[i]; /* the arithmetical center */ } /* take the average of the centroid sum */ center /= face; /* now calculate the covariance matrix - if not written in three for-loops, it would compute faster: minor */ for( int j = 0; j < 3; ++j) { for( int k = 0; k < 3; ++k) { for( int i = 0; i < length; ++i) { p = (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[0]]); q = (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[1]]); r = (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[2]]); covariance[j][k] = facelet[i] * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] + q[j] * q[k] + r[j] * r[k]); } covariance[j][k] = covariance[j][k] / (12.0f * face) - center[j] * center[k]; } } for( int i = 0; i < 3; ++i) { box.covarianceMatrix[i][0] = covariance[i][0]; box.covarianceMatrix[i][1] = covariance[i][1]; box.covarianceMatrix[i][2] = covariance[i][2]; } box.center = center; /* debug output section*/ PRINTF(4)("\nOBB Covariance Matrix:\n"); for(int j = 0; j < 3; ++j) { PRINT(4)("\t\t"); for(int k = 0; k < 3; ++k) { PRINT(4)("%11.4f\t", covariance[j][k]); } PRINT(4)("\n"); } PRINTF(4)("\nWeighteed AABB Center:\n\t\t%11.4f\t %11.4f\t %11.4f\n", center.x, center.y, center.z); } /** * calculate the eigenvectors for the object oriented box * @param box: reference to the box * @param modelInf: the model info structure of the model * @param tirangleIndexes: an array with the indexes of the triangles inside this * @param length: the length of the indexes array */ void AABBTreeNode::calculateBoxEigenvectors(AABB& box, const modelInfo& modelInf, const int* triangleIndexes, int length) { Matrix covMat( box.covarianceMatrix ); //!< covariance matrix (in the matrix dataform) /* now getting spanning vectors of the sub-space: the eigenvectors of a symmertric matrix, such as the covarience matrix are mutually orthogonal. after normalizing them, they can be used as a the basis vectors */ // this is for axis aligned bouning boxes only box.axis[0] = Vector(1,0,0); box.axis[1] = Vector(0,1,0); box.axis[2] = Vector(0,0,1); PRINTF(4)("Eigenvectors:\n"); PRINT(4)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[0].x, box.axis[0].y, box.axis[0].z); PRINT(4)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[1].x, box.axis[1].y, box.axis[1].z); PRINT(4)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[2].x, box.axis[2].y, box.axis[2].z); } /** * calculate the eigenvectors for the object oriented box * @param box: reference to the box * @param modelInf: the model info structure of the model * @param tirangleIndexes: an array with the indexes of the triangles inside this * @param length: the length of the indexes array */ void AABBTreeNode::calculateBoxAxis(AABB& box, const modelInfo& modelInf, const int* triangleIndexes, int length) { PRINTF(4)("Calculate Box Axis\n"); /* now get the axis length */ float tmpLength; //!< tmp save point for the length Plane p0(box.axis[0], box.center); //!< the axis planes Plane p1(box.axis[1], box.center); //!< the axis planes Plane p2(box.axis[2], box.center); //!< the axis planes float maxLength[3]; //!< maximal lenth of the axis float minLength[3]; //!< minimal length of the axis const float* tmpVec; //!< variable taking tmp vectors float centerOffset[3]; /* get the maximal dimensions of the body in all directions */ /* for the initialisation the value just has to be inside of the polygon soup -> first vertices (rand) */ for( int k = 0; k < 3; k++) { tmpVec = (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[0]].indexToVertices[0]]); Plane* p; if( k == 0) p = &p0; else if( k == 1) p = &p1; else p = &p2; maxLength[k] = p->distancePoint(tmpVec); minLength[k] = p->distancePoint(tmpVec); for( int j = 0; j < length; ++j) { for( int i = 0; i < 3; ++i) { tmpVec = &modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]]; tmpLength = p->distancePoint(tmpVec); if( tmpLength > maxLength[k]) maxLength[k] = tmpLength; else if( tmpLength < minLength[k]) minLength[k] = tmpLength; } } } /* calculate the real centre of the body by using the axis length */ for( int i = 0; i < 3; ++i) { if( maxLength[i] > 0.0f && minLength[i] > 0.0f) // both axis positiv centerOffset[i] = minLength[i] + (maxLength[i] - minLength[i]) / 2.0f; else if( maxLength[i] > 0.0f && maxLength[i] < 0.0f) // positiv and negativ centerOffset[i] = (maxLength[i] + minLength[i]) / 2.0f; else //both negativ centerOffset[i] = minLength[i] + (maxLength[i] - minLength[i]) / 2.0f; box.halfLength[i] = (maxLength[i] - minLength[i]) / 2.0f; } box.center += (box.axis[0] * centerOffset[0]); box.center += (box.axis[1] * centerOffset[1]); box.center += (box.axis[2] * centerOffset[2]); PRINTF(4)("\n"); PRINT(4)("\tAxis halflength x: %11.2f (max: %11.2f, \tmin: %11.2f), offset: %11.2f\n", box.halfLength[0], maxLength[0], minLength[0], centerOffset[0]); PRINT(4)("\tAxis halflength y: %11.2f (max: %11.2f, \tmin: %11.2f), offset: %11.2f\n", box.halfLength[1], maxLength[1], minLength[1], centerOffset[1] ); PRINT(4)("\tAxis halflength z: %11.2f (max: %11.2f, \tmin: %11.2f), offset: %11.2f\n", box.halfLength[2], maxLength[2], minLength[2], centerOffset[2]); } /** * this separates an ob-box in the middle * @param box: the box to separate * * this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis */ void AABBTreeNode::forkBox(AABB& box) { PRINTF(4)("Fork Box\n"); PRINTF(4)("Calculating the longest Axis\n"); /* get the longest axis of the box */ float longestAxis = -1.0f; //!< the length of the longest axis int longestAxisIndex = 0; //!< this is the nr of the longest axis /* now get the longest axis of the three exiting */ for( int i = 0; i < 3; ++i) { if( longestAxis < box.halfLength[i]) { longestAxis = box.halfLength[i]; longestAxisIndex = i; } } PRINTF(4)("\nLongest Axis is: Nr %i with a half-length of:%11.2f\n", longestAxisIndex, longestAxis); PRINTF(4)("Separating along the longest axis\n"); /* get the closest vertex near the center */ float tmpDist; //!< variable to save diverse distances temporarily Plane middlePlane(box.axis[longestAxisIndex], box.center); //!< the middle plane /* now definin the separation plane through this specified nearest point and partition the points depending on which side they are located */ std::list partition1; //!< the vertex partition 1 std::list partition2; //!< the vertex partition 2 float* triangleCenter = new float[3]; //!< the center of the triangle const float* a; //!< triangle edge a const float* b; //!< triangle edge b const float* c; //!< triangle edge c /* find the center of the box */ this->separationPlane = Plane(box.axis[longestAxisIndex], box.center); this->sepPlaneCenter[0] = box.center.x; this->sepPlaneCenter[1] = box.center.y; this->sepPlaneCenter[2] = box.center.z; this->longestAxisIndex = longestAxisIndex; for( int i = 0; i < box.triangleIndexesLength; ++i) { /* first calculate the middle of the triangle */ a = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[0]]; b = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[1]]; c = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[2]]; triangleCenter[0] = (a[0] + b[0] + c[0]) / 3.0f; triangleCenter[1] = (a[1] + b[1] + c[1]) / 3.0f; triangleCenter[2] = (a[2] + b[2] + c[2]) / 3.0f; tmpDist = this->separationPlane.distancePoint(*((sVec3D*)triangleCenter)); if( tmpDist > 0.0f) partition1.push_back(box.triangleIndexes[i]); /* positive numbers plus zero */ else if( tmpDist < 0.0f) partition2.push_back(box.triangleIndexes[i]); /* negatice numbers */ else { partition1.push_back(box.triangleIndexes[i]); /* 0.0f? unprobable... */ partition2.push_back(box.triangleIndexes[i]); } } PRINTF(4)("\nPartition1: got \t%i Vertices \nPartition2: got \t%i Vertices\n", partition1.size(), partition2.size()); /* now comes the separation into two different sVec3D arrays */ int index; //!< index storage place int* triangleIndexList1; //!< the vertex list 1 int* triangleIndexList2; //!< the vertex list 2 std::list::iterator element; //!< the list iterator triangleIndexList1 = new int[partition1.size()]; triangleIndexList2 = new int[partition2.size()]; for( element = partition1.begin(), index = 0; element != partition1.end(); element++, index++) triangleIndexList1[index] = (*element); for( element = partition2.begin(), index = 0; element != partition2.end(); element++, index++) triangleIndexList2[index] = (*element); if( this->triangleIndexList1!= NULL) delete[] this->triangleIndexList1; this->triangleIndexList1 = triangleIndexList1; this->triangleIndexLength1 = partition1.size(); if( this->triangleIndexList2 != NULL) delete[] this->triangleIndexList2; this->triangleIndexList2 = triangleIndexList2; this->triangleIndexLength2 = partition2.size(); } /** * collides one tree with an other * @param treeNode the other bv tree node * @param nodeA the worldentity belonging to this bv * @param nodeB the worldentity belonging to treeNode */ void AABBTreeNode::collideWith(BVTreeNode* treeNode, WorldEntity* nodeA, WorldEntity* nodeB) { if( unlikely(treeNode == NULL || nodeA == NULL || nodeB == NULL)) return; PRINTF(4)("collideWith\n"); PRINTF(5)("Checking AABB %i vs %i: ", this->getIndex(), treeNode->getIndex()); // for now only collide with AABBTreeNodes this->collideWithOBB((AABBTreeNode*)treeNode, nodeA, nodeB); } /** * collides one obb tree with an other * @param treeNode the other bv tree node * @param nodeA the worldentity belonging to this bv * @param nodeB the worldentity belonging to treeNode */ void AABBTreeNode::collideWithOBB(AABBTreeNode* treeNode, WorldEntity* nodeA, WorldEntity* nodeB) { if( this->overlapTest(this->bvElement, treeNode->bvElement, nodeA, nodeB)) { PRINTF(5)("collision @ lvl %i, object %s::%s vs. %s::%s, (%p, %p)\n", this->depth, nodeA->getClassCName(), nodeA->getCName(), nodeB->getClassCName(), nodeA->getCName(), this->nodeLeft, this->nodeRight); // left node if( this->nodeLeft != NULL ) { if( this->overlapTest(this->nodeLeft->bvElement, treeNode->bvElement, nodeA, nodeB)) { if( treeNode->nodeLeft != NULL) this->nodeLeft->collideWith(treeNode->nodeLeft, nodeA, nodeB); if( treeNode->nodeRight != NULL) this->nodeLeft->collideWith(treeNode->nodeRight, nodeA, nodeB); } } // right node if( this->nodeRight != NULL ) { if( this->overlapTest(this->nodeRight->bvElement, treeNode->bvElement, nodeA, nodeB)) { if( treeNode->nodeLeft != NULL) this->nodeRight->collideWith(treeNode->nodeLeft, nodeA, nodeB); if( treeNode->nodeRight != NULL) this->nodeRight->collideWith(treeNode->nodeRight, nodeA, nodeB); } } // hybrid mode: we reached the end of this obbtree, now reach the end of the other tree if( this->nodeLeft == NULL && this->nodeRight == NULL) { if( treeNode->nodeLeft != NULL) this->collideWith(treeNode->nodeLeft, nodeA, nodeB); if( treeNode->nodeRight != NULL) this->collideWith(treeNode->nodeRight, nodeA, nodeB); } // now check if we reached the end of both trees if( unlikely((this->nodeRight == NULL && this->nodeLeft == NULL) && (treeNode->nodeRight == NULL && treeNode->nodeLeft == NULL)) ) { CoRe::CollisionTube::getInstance()->registerCollisionEvent( nodeA, nodeB, (BoundingVolume*)this->bvElement, (BoundingVolume*)treeNode->bvElement); } } } /** * this actualy checks if one obb box touches the other * @param boxA the box from nodeA * @param boxB the box from nodeB * @param nodeA the node itself * @param nodeB the node itself */ bool AABBTreeNode::overlapTest(AABB* boxA, AABB* boxB, WorldEntity* nodeA, WorldEntity* nodeB) { //HACK remove this again this->owner = nodeA; // if( boxB == NULL || boxA == NULL) // return false; /* first check all axis */ Vector t; float rA = 0.0f; float rB = 0.0f; Vector l; Vector rotAxisA[3]; Vector rotAxisB[3]; rotAxisA[0] = nodeA->getAbsDir().apply(boxA->axis[0]); rotAxisA[1] = nodeA->getAbsDir().apply(boxA->axis[1]); rotAxisA[2] = nodeA->getAbsDir().apply(boxA->axis[2]); rotAxisB[0] = nodeB->getAbsDir().apply(boxB->axis[0]); rotAxisB[1] = nodeB->getAbsDir().apply(boxB->axis[1]); rotAxisB[2] = nodeB->getAbsDir().apply(boxB->axis[2]); t = nodeA->getAbsCoor() + nodeA->getAbsDir().apply(boxA->center) - ( nodeB->getAbsCoor() + nodeB->getAbsDir().apply(boxB->center)); /* All 3 axis of the object A */ for( int j = 0; j < 3; ++j) { rA = 0.0f; rB = 0.0f; l = rotAxisA[j]; rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l)); rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l)); rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l)); rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l)); rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l)); rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l)); PRINTF(5)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB); if( (rA + rB) < fabs(t.dot(l))) { PRINTF(4)("no Collision\n"); return false; } } /* All 3 axis of the object B */ for( int j = 0; j < 3; ++j) { rA = 0.0f; rB = 0.0f; l = rotAxisB[j]; rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l)); rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l)); rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l)); rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l)); rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l)); rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l)); PRINTF(5)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB); if( (rA + rB) < fabs(t.dot(l))) { PRINTF(4)("no Collision\n"); return false; } } /* Now check for all face cross products */ for( int j = 0; j < 3; ++j) { for(int k = 0; k < 3; ++k ) { rA = 0.0f; rB = 0.0f; l = rotAxisA[j].cross(rotAxisB[k]); rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l)); rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l)); rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l)); rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l)); rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l)); rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l)); PRINTF(5)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB); if( (rA + rB) < fabs(t.dot(l))) { PRINTF(4)("keine Kollision\n"); return false; } } } /* FIXME: there is no collision mark set now */ boxA->bCollided = true; /* use this ONLY(!!!!) for drawing operations */ boxB->bCollided = true; PRINTF(4)("Kollision!\n"); return true; } /** * * draw the BV tree - debug mode */ void AABBTreeNode::drawBV(int depth, int drawMode, const Vector& color, bool top) const { /* this function can be used to draw the triangles and/or the points only */ if( 1 /*drawMode & DRAW_MODEL || drawMode & DRAW_ALL*/) { if( depth == 0/*!(drawMode & DRAW_SINGLE && depth != 0)*/) { if( 1 /*drawMode & DRAW_POINTS*/) { glBegin(GL_POINTS); glColor3f(0.3, 0.8, 0.54); for(unsigned int i = 0; i < this->bvElement->modelInf->numVertices*3; i+=3) glVertex3f(this->bvElement->modelInf->pVertices[i], this->bvElement->modelInf->pVertices[i+1], this->bvElement->modelInf->pVertices[i+2]); glEnd(); } } } if (top) { glPushAttrib(GL_ENABLE_BIT); glDisable(GL_LIGHTING); glDisable(GL_TEXTURE_2D); } glColor3f(color.x, color.y, color.z); /* draw world axes */ if( 1 /*drawMode & DRAW_BV_AXIS*/) { glBegin(GL_LINES); glColor3f(1.0, 0.0, 0.0); glVertex3f(0.0, 0.0, 0.0); glVertex3f(3.0, 0.0, 0.0); glColor3f(0.0, 1.0, 0.0); glVertex3f(0.0, 0.0, 0.0); glVertex3f(0.0, 3.0, 0.0); glColor3f(0.0, 0.0, 1.0); glVertex3f(0.0, 0.0, 0.0); glVertex3f(0.0, 0.0, 3.0); glEnd(); } if( 1/*drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL*/) { if( 1/*drawMode & DRAW_SINGLE && depth != 0*/) { /* draw the obb axes */ glBegin(GL_LINES); glColor3f(1.0, 0.0, 0.0); glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z); glVertex3f(this->bvElement->center.x + this->bvElement->axis[0].x * this->bvElement->halfLength[0], this->bvElement->center.y + this->bvElement->axis[0].y * this->bvElement->halfLength[0], this->bvElement->center.z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]); glColor3f(0.0, 1.0, 0.0); glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z); glVertex3f(this->bvElement->center.x + this->bvElement->axis[1].x * this->bvElement->halfLength[1], this->bvElement->center.y + this->bvElement->axis[1].y * this->bvElement->halfLength[1], this->bvElement->center.z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]); glColor3f(0.0, 0.0, 1.0); glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z); glVertex3f(this->bvElement->center.x + this->bvElement->axis[2].x * this->bvElement->halfLength[2], this->bvElement->center.y + this->bvElement->axis[2].y * this->bvElement->halfLength[2], this->bvElement->center.z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]); glEnd(); } } /* DRAW POLYGONS */ if( (drawMode & DRAW_BV_POLYGON) || (drawMode & DRAW_ALL) || (drawMode & DRAW_BV_BLENDED)) { if (top) { glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE); } if( this->nodeLeft == NULL && this->nodeRight == NULL) depth = 0; if( depth == 0 /*!(drawMode & DRAW_SINGLE && depth != 0)*/) { Vector cen = this->bvElement->center; Vector* axis = this->bvElement->axis; float* len = this->bvElement->halfLength; if( this->bvElement->bCollided) { glColor4f(1.0, 1.0, 1.0, .5); // COLLISION COLOR } else if( drawMode & DRAW_BV_BLENDED) { glColor4f(color.x, color.y, color.z, .5); } /* draw bounding box */ if( drawMode & DRAW_BV_BLENDED) glBegin(GL_QUADS); else glBegin(GL_LINE_LOOP); glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2], cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2], cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]); glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2], cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2], cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]); glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2], cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2], cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]); glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2], cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2], cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]); glEnd(); if( drawMode & DRAW_BV_BLENDED) glBegin(GL_QUADS); else glBegin(GL_LINE_LOOP); glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2], cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2], cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]); glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2], cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2], cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]); glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2], cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2], cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]); glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2], cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2], cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]); glEnd(); if( drawMode & DRAW_BV_BLENDED) glBegin(GL_QUADS); else glBegin(GL_LINE_LOOP); glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2], cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2], cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]); glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2], cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2], cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]); glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2], cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2], cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]); glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2], cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2], cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]); glEnd(); if( drawMode & DRAW_BV_BLENDED) glBegin(GL_QUADS); else glBegin(GL_LINE_LOOP); glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2], cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2], cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]); glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2], cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2], cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]); glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2], cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2], cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]); glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2], cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2], cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]); glEnd(); if( drawMode & DRAW_BV_BLENDED) { glBegin(GL_QUADS); glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2], cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2], cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]); glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2], cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2], cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]); glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2], cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2], cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]); glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2], cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2], cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]); glEnd(); glBegin(GL_QUADS); glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2], cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2], cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]); glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2], cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2], cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]); glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2], cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2], cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]); glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2], cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2], cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]); glEnd(); } if( drawMode & DRAW_BV_BLENDED) glColor3f(color.x, color.y, color.z); } } /* DRAW SEPARATING PLANE */ if( (drawMode & DRAW_SEPARATING_PLANE) || (drawMode & DRAW_ALL)) { if( !(drawMode & DRAW_SINGLE && depth != 0)) { if( drawMode & DRAW_BV_BLENDED) glColor4f(color.x, color.y, color.z, .6); /* now draw the separation plane */ Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3]; Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3]; Vector c = this->bvElement->center; float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3]; float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3]; glBegin(GL_QUADS); glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2); glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2); glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2); glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2); glEnd(); if( drawMode & DRAW_BV_BLENDED) glColor4f(color.x, color.y, color.z, 1.0); } } if (depth > 0) { if( this->nodeLeft != NULL) this->nodeLeft->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(15.0,0.0,0.0)), false); if( this->nodeRight != NULL) this->nodeRight->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(30.0,0.0,0.0)), false); } this->bvElement->bCollided = false; if (top) glPopAttrib(); } void AABBTreeNode::debug() const { PRINT(0)("========AABBTreeNode::debug()=====\n"); PRINT(0)(" Current depth: %i", this->depth); PRINT(0)(" "); PRINT(0)("=================================\n"); }