/* orxonox - the future of 3D-vertical-scrollers Copyright (C) 2004 orx This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. ### File Specific: main-programmer: Christian Meyer co-programmer: ... */ /*! * @file quaternion.h * A basic 3D quaternion math framework * * Contains classes to handle vectors, lines, rotations and planes */ #ifndef __QUATERNION_H_ #define __QUATERNION_H_ #include "compiler.h" //! PI the circle-constant #define PI 3.14159265359f #include "vector.h" //! Quaternion /** Class to handle 3-dimensional rotation efficiently */ class Quaternion { public: /** creates a Default quaternion (multiplicational identity Quaternion)*/ inline Quaternion () { w = 1; v = Vector(0,0,0); } /** Copy constructor @param q the Quaternion to copy. */ inline Quaternion (const Quaternion& q) { w = q.w; v = q.v; }; /** creates a Quaternion looking into the direction v @param v: the direction @param f: the value */ inline Quaternion (const Vector& v, float f) { this->w = f; this->v = v; } /** turns a rotation along an axis into a Quaternion @param angle: the amount of radians to rotate @param axis: the axis to rotate around */ inline Quaternion (float angle, const Vector& axis) { w = cos(angle/2.0); v = axis * sin(angle/2.0); } Quaternion (const Vector& dir, const Vector& up); Quaternion (float roll, float pitch, float yaw); void from3x3(float m[3][3]); void from4x4(float m[4][4]); /** @param q: the Quaternion to compare with this one. @returns true if the Quaternions are the same, false otherwise */ inline bool operator== (const Quaternion& q) const { return (unlikely(this->v==q.v&&this->w==q.w))?true:false; }; /** @param q: the Quaternion to compare with this one. @returns true if the Quaternions are the same, false otherwise */ inline bool operator!= (const Quaternion& q) const { return (unlikely(this->v!=q.v||this->w!=q.w))?true:false; }; /** @param f: a real value @return a Quaternion containing the quotient */ inline Quaternion operator/ (const float& f) const { return (unlikely(f==0.0)) ? Quaternion() : Quaternion(this->v/f, this->w/f); }; /** @param f: the value to divide by @returns the quaternion devided by f (this /= f) */ inline const Quaternion& operator/= (const float& f) {*this = *this / f; return *this;} /** @param f: a real value @return a Quaternion containing the product */ inline Quaternion operator* (const float& f) const { return Quaternion(this->v*f, this->w*f); }; /** @param f: the value to multiply by @returns the quaternion multiplied by f (this *= f) */ inline const Quaternion& operator*= (const float& f) {*this = *this * f; return *this;} /** @param q: another Quaternion to rotate this by @return a quaternion that represents the first one rotated by the second one (WARUNING: this operation is not commutative! e.g. (A*B) != (B*A)) */ Quaternion operator* (const Quaternion& q) const { return Quaternion(Vector(this->w*q.v.x + this->v.x*q.w + this->v.y*q.v.z - this->v.z*q.v.y, this->w*q.v.y + this->v.y*q.w + this->v.z*q.v.x - this->v.x*q.v.z, this->w*q.v.z + this->v.z*q.w + this->v.x*q.v.y - this->v.y*q.v.x), this->w*q.w - this->v.x*q.v.x - this->v.y*q.v.y - this->v.z*q.v.z); }; /** @param q: the Quaternion to multiply by @returns the quaternion multiplied by q (this *= q) */ inline const Quaternion& operator*= (const Quaternion& q) {*this = *this * q; return *this; }; /** @param q the Quaternion by which to devide @returns the division from this by q (this / q) */ inline Quaternion operator/ (const Quaternion& q) const { return *this * q.inverse(); }; /** @param q the Quaternion by which to devide @returns the division from this by q (this /= q) */ inline const Quaternion& operator/= (const Quaternion& q) { *this = *this * q.inverse(); return *this; }; /** @param q the Quaternion to add to this @returns the quaternion added with q (this + q) */ inline Quaternion operator+ (const Quaternion& q) const { return Quaternion(q.v + v, q.w + w); }; /** @param q the Quaternion to add to this @returns the quaternion added with q (this += q) */ inline const Quaternion& operator+= (const Quaternion& q) { this->v += q.v; this->w += q.w; return *this; }; /** @param q the Quaternion to substrace from this @returns the quaternion substracted by q (this - q) */ inline Quaternion operator- (const Quaternion& q) const { return Quaternion(q.v - v, q.w - w); } /** @param q the Quaternion to substrace from this @returns the quaternion substracted by q (this -= q) */ inline const Quaternion& operator-= (const Quaternion& q) { this->v -= q.v; this->w -= q.w; return *this; }; /** copy constructor @param q: the Quaternion to set this to. @returns the Quaternion q (or this) */ inline Quaternion operator= (const Quaternion& q) {this->v = q.v; this->w = q.w; return *this;} /** conjugates this Quaternion @returns the conjugate */ inline Quaternion conjugate () const { return Quaternion(Vector(-v.x, -v.y, -v.z), this->w); }; /** @returns the norm of The Quaternion */ inline float norm () const { return sqrt(w*w + v.x*v.x + v.y*v.y + v.z*v.z); }; /** @returns the inverted Quaterntion of this */ inline Quaternion inverse () const { return conjugate() / (w*w + v.x*v.x + v.y*v.y + v.z*v.z); }; /** @returns the dot Product of a Quaternion */ inline float dot (const Quaternion& q) const { return v.x*q.v.x + v.y*q.v.y + v.z*q.v.z + w*q.w; }; /** @retuns the Distance between two Quaternions */ inline float distance(const Quaternion& q) const { return 2*acos(fabsf(this->dot(q))); }; /** @param v: the Vector @return a new Vector representing v rotated by the Quaternion */ inline Vector apply (const Vector& v) const { return (*this * Quaternion(v, 0) * conjugate()).v; }; void matrix (float m[4][4]) const; /** @returns the normalized Quaternion (|this|) */ inline Quaternion getNormalized() const { float n = this->norm(); return Quaternion(this->v/n, this->w/n); }; /** normalizes the current Quaternion */ inline void normalize() { float n = this->norm(); this->v /= n; this->w/=n; }; float getHeading() const; Quaternion getHeadingQuat() const; float getAttitude() const; Quaternion getAttitudeQuat() const; float getBank() const; Quaternion getBankQuat() const; /** @returns the rotational axis of this Quaternion */ inline Vector getSpacialAxis() const { return this->v / sin(acos(w));/*sqrt(v.x*v.x + v.y*v.y + v.z+v.z);*/ }; /** @returns the rotational angle of this Quaternion around getSpacialAxis() !! IN DEGREE !! */ inline float getSpacialAxisAngle() const { return 360.0 / M_PI * acos( this->w ); }; inline void slerpTo(const Quaternion& toQuat, float t); static Quaternion quatSlerp(const Quaternion& from, const Quaternion& to, float t); void debug() const; void debug2() const; public: Vector v; //!< Imaginary Vector float w; //!< Real part of the number }; #endif /* __QUATERNION_H_ */