1 | /* |
---|
2 | orxonox - the future of 3D-vertical-scrollers |
---|
3 | |
---|
4 | Copyright (C) 2004 orx |
---|
5 | |
---|
6 | This program is free software; you can redistribute it and/or modify |
---|
7 | it under the terms of the GNU General Public License as published by |
---|
8 | the Free Software Foundation; either version 2, or (at your option) |
---|
9 | any later version. |
---|
10 | |
---|
11 | ### File Specific: |
---|
12 | main-programmer: Benjamin Grauer |
---|
13 | co-programmer: Patrick Boenzli |
---|
14 | */ |
---|
15 | #include "matrix.h" |
---|
16 | #include <cmath> |
---|
17 | |
---|
18 | #ifdef DEBUG |
---|
19 | #include "debug.h" |
---|
20 | #else |
---|
21 | #include <stdio.h> |
---|
22 | #define PRINT(x) printf |
---|
23 | #endif |
---|
24 | |
---|
25 | /** |
---|
26 | * constructs a Matrix from all Parameters in a Row |
---|
27 | * @param m11 [0][0] |
---|
28 | * @param m12 [0][1] |
---|
29 | * @param m13 [0][2] |
---|
30 | * @param m21 [1][0] |
---|
31 | * @param m22 [1][1] |
---|
32 | * @param m23 [1][2] |
---|
33 | * @param m31 [2][0] |
---|
34 | * @param m32 [2][1] |
---|
35 | * @param m33 [2][2] |
---|
36 | */ |
---|
37 | Matrix::Matrix ( float m11, float m12, float m13, |
---|
38 | float m21, float m22, float m23, |
---|
39 | float m31, float m32, float m33 ) |
---|
40 | { |
---|
41 | this->m11 = m11; this->m12 = m12; this->m13 = m13; |
---|
42 | this->m21 = m21; this->m22 = m22; this->m23 = m23; |
---|
43 | this->m31 = m31; this->m32 = m32; this->m33 = m33; |
---|
44 | }; |
---|
45 | |
---|
46 | /** |
---|
47 | * creates a Matrix out of an Array of floats with size [3][3] |
---|
48 | * @param m the Matrix stored in an Array |
---|
49 | */ |
---|
50 | Matrix::Matrix(const float m[3][3]) |
---|
51 | { |
---|
52 | this->m11 = m[0][0]; this->m12 = m[0][1]; this->m13 = m[0][2]; |
---|
53 | this->m21 = m[1][0]; this->m22 = m[1][1]; this->m23 = m[1][2]; |
---|
54 | this->m31 = m[2][0]; this->m32 = m[2][1]; this->m33 = m[2][2]; |
---|
55 | }; |
---|
56 | |
---|
57 | |
---|
58 | /** |
---|
59 | * adds a Matrix to this one returning the result |
---|
60 | * @param m the Matrix to add to this one |
---|
61 | * @returns a copy of this Matrix added m |
---|
62 | */ |
---|
63 | Matrix Matrix::operator+ (const Matrix& m) const |
---|
64 | { |
---|
65 | return Matrix (this->m11 + m.m11, this->m12 + m.m12, this->m13 + m.m13, |
---|
66 | this->m21 + m.m21, this->m22 + m.m22, this->m23 + m.m23, |
---|
67 | this->m31 + m.m31, this->m32 + m.m32, this->m33 + m.m33); |
---|
68 | } |
---|
69 | |
---|
70 | /** |
---|
71 | * sustracts a Matrix from this one returning the result |
---|
72 | * @param m the Matrix to substract from this one |
---|
73 | * @returns a copy of this Matrix substracted m |
---|
74 | */ |
---|
75 | Matrix Matrix::operator- (const Matrix& m) const |
---|
76 | { |
---|
77 | return Matrix (this->m11 - m.m11, this->m12 - m.m12, this->m13 - m.m13, |
---|
78 | this->m21 - m.m21, this->m22 - m.m22, this->m23 - m.m23, |
---|
79 | this->m31 - m.m31, this->m32 - m.m32, this->m33 - m.m33); |
---|
80 | } |
---|
81 | |
---|
82 | /** |
---|
83 | * multiplies each value of a copu of this Matrix by k |
---|
84 | * @param k the multiplication factor |
---|
85 | * @returns a copy of this Matrix multiplied by k |
---|
86 | */ |
---|
87 | Matrix Matrix::operator* (float k) const |
---|
88 | { |
---|
89 | return Matrix(this->m11 * k, this->m12 * k, this->m13 * k, |
---|
90 | this->m21 * k, this->m22 * k, this->m23 * k, |
---|
91 | this->m31 * k, this->m32 * k, this->m33 * k); |
---|
92 | } |
---|
93 | |
---|
94 | /** |
---|
95 | * multiplies the Matrix by a Vector returning a Vector of the result |
---|
96 | * @param v the Vector the matrix will be multiplied with |
---|
97 | * @returns the result of the Multiplication |
---|
98 | */ |
---|
99 | Vector Matrix::operator* (const Vector& v) const |
---|
100 | { |
---|
101 | return Vector (this->m11*v.x + this->m12*v.y + this->m13*v.z, |
---|
102 | this->m21*v.x + this->m22*v.y + this->m23*v.z, |
---|
103 | this->m31*v.x + this->m32*v.y + this->m33*v.z ); |
---|
104 | } |
---|
105 | |
---|
106 | /** |
---|
107 | * @returns a Transposed copy of this Matrix |
---|
108 | */ |
---|
109 | Matrix Matrix::getTransposed() const |
---|
110 | { |
---|
111 | return Matrix( this->m11, this->m21, this->m31, |
---|
112 | this->m12, this->m22, this->m32, |
---|
113 | this->m13, this->m23, this->m33); |
---|
114 | } |
---|
115 | |
---|
116 | /** |
---|
117 | * converts the Matrix into 3 Vector, and returns them in m1, m2 and m3 |
---|
118 | * @param m1 the first Column of the Matrix as a Vector |
---|
119 | * @param m2 the second Column of the Matrix as a Vector |
---|
120 | * @param m3 the third Column of the Matrix as a Vector |
---|
121 | */ |
---|
122 | void Matrix::toVectors(Vector& m1, Vector& m2, Vector& m3) const |
---|
123 | { |
---|
124 | m1 = Vector(this->m11, this->m21, this->m31); |
---|
125 | m2 = Vector(this->m12, this->m22, this->m32); |
---|
126 | m3 = Vector(this->m13, this->m23, this->m33); |
---|
127 | } |
---|
128 | |
---|
129 | /** |
---|
130 | * @returns the Determinant of this Matrix |
---|
131 | */ |
---|
132 | float Matrix::getDeterminant() const |
---|
133 | { |
---|
134 | return this->m11*(this->m22*this->m33 - this->m23*this->m32) - |
---|
135 | this->m12*(this->m21*this->m33 - this->m23*this->m31) + |
---|
136 | this->m13*(this->m21*this->m32 - this->m22*this->m31); |
---|
137 | } |
---|
138 | |
---|
139 | /** |
---|
140 | * calculates an returns the EingenValues of this Matrix. |
---|
141 | * @param eigneValues the Values calculated in a Vector |
---|
142 | * @returns the Count of found eigenValues |
---|
143 | * |
---|
144 | * This Function calculates the EigenValues of a 3x3-Matrix explicitly. |
---|
145 | * the Returned value eigenValues has the Values stored in Vector form |
---|
146 | * The Vector will be filled upside down, meaning if the count of found |
---|
147 | * eingenValues is 1 the only value will be located in eigneValues.x |
---|
148 | */ |
---|
149 | int Matrix::getEigenValues(Vector& eigenValues) const |
---|
150 | { |
---|
151 | int retVal = -1; |
---|
152 | float a = 0; |
---|
153 | float b = 0; |
---|
154 | |
---|
155 | float c[3]; |
---|
156 | |
---|
157 | // c[0] is the determinante of mat |
---|
158 | c[0] = this->m11 * this->m22 * this->m33 + |
---|
159 | 2* this->m12 * this->m13 * this->m23 - |
---|
160 | this->m11 * this->m23 * this->m23 - |
---|
161 | this->m22 * this->m13 * this->m13 - |
---|
162 | this->m33 * this->m12 * this->m12; |
---|
163 | |
---|
164 | // c[1] is the trace of a |
---|
165 | c[1] = this->m11 * this->m22 - |
---|
166 | this->m12 * this->m12 + |
---|
167 | this->m11 * this->m33 - |
---|
168 | this->m13 * this->m13 + |
---|
169 | this->m22 * this->m33 - |
---|
170 | this->m23 * this->m23; |
---|
171 | |
---|
172 | // c[2] is the sum of the diagonal elements |
---|
173 | c[2] = this->m11 + |
---|
174 | this->m22 + |
---|
175 | this->m33; |
---|
176 | |
---|
177 | |
---|
178 | // Computing the roots: |
---|
179 | a = (3.0*c[1] - c[2]*c[2]) / 3.0; |
---|
180 | b = (-2.0*c[2]*c[2]*c[2] + 9.0*c[1]*c[2] - 27.0*c[0]) / 27.0; |
---|
181 | |
---|
182 | float Q = b*b/4.0 + a*a*a/27.0; |
---|
183 | |
---|
184 | // 3 distinct Roots |
---|
185 | if (Q < 0) |
---|
186 | { |
---|
187 | float psi = atan2(sqrt(-Q), -b/2.0); |
---|
188 | float p = sqrt((b/2.0)*(b/2.0) - Q); |
---|
189 | |
---|
190 | eigenValues.x = c[2]/3.0 + 2 * pow(p, 1/3.0) * cos(psi/3.0); |
---|
191 | eigenValues.y = c[2]/3.0 - pow(p, 1/3.0) * (cos(psi/3.0) |
---|
192 | + sqrt(3.0) * sin(psi/3.0)); |
---|
193 | eigenValues.z = c[2]/3.0 - pow(p, 1/3.0) * (cos(psi/3.0) |
---|
194 | - sqrt(3.0) * sin(psi/3.0)); |
---|
195 | retVal = 3; |
---|
196 | } |
---|
197 | // 2 Distinct Roots |
---|
198 | else if (Q == 0) |
---|
199 | { |
---|
200 | eigenValues.x = eigenValues.y = c[2]/3.0 + pow(b/2.0, 1.0/3.0); |
---|
201 | eigenValues.z = c[2]/3.0 + 2* pow(b/2.0, 1.0/3.0); |
---|
202 | retVal = 2; |
---|
203 | } |
---|
204 | // 1 Root (not calculating anything.) |
---|
205 | else if (Q > 0) |
---|
206 | { |
---|
207 | eigenValues.x = eigenValues.y = eigenValues.z = 1; |
---|
208 | retVal = 1; |
---|
209 | } |
---|
210 | return retVal; |
---|
211 | } |
---|
212 | |
---|
213 | /** |
---|
214 | * calculates and returns the EigenVectors of this function as Vectors. |
---|
215 | * @param eigVc1 the first eigenVector will be stored here. |
---|
216 | * @param eigVc2 the second eigenVector will be stored here. |
---|
217 | * @param eigVc3 the third eigenVector will be stored here. |
---|
218 | */ |
---|
219 | void Matrix::getEigenVectors(Vector& eigVc1, Vector& eigVc2, Vector& eigVc3) const |
---|
220 | { |
---|
221 | Vector eigenValues; |
---|
222 | int eigenValuesCount = this->getEigenValues(eigenValues); |
---|
223 | |
---|
224 | if (eigenValuesCount == 2 || eigenValuesCount == 3) |
---|
225 | { |
---|
226 | /* eigenvec creation */ |
---|
227 | eigVc1.x = -1/this->m13*(this->m33 - eigenValues.x) + |
---|
228 | (this->m32*(-this->m31*this->m32 + this->m12*this->m33 - this->m12*eigenValues.x)) / |
---|
229 | this->m13*(-this->m13*this->m22 - this->m12*this->m23 + this->m13*eigenValues.x); |
---|
230 | |
---|
231 | eigVc1.y = -( -this->m13*this->m23 + this->m12*this->m33 - this->m12*eigenValues.x) / |
---|
232 | (-this->m31*this->m22 + this->m12*this->m23 + this->m13*eigenValues.x); |
---|
233 | |
---|
234 | eigVc1.z = 1.0f; |
---|
235 | |
---|
236 | eigVc2.x = -1/this->m13*(this->m33 - eigenValues.y) + |
---|
237 | (this->m32*(-this->m31*this->m32 + this->m12*this->m33 - this->m12*eigenValues.y)) / |
---|
238 | this->m13*(-this->m13*this->m22 - this->m12*this->m23 + this->m13*eigenValues.y); |
---|
239 | |
---|
240 | eigVc2.y = -( -this->m13*this->m23 + this->m12*this->m33 - this->m12*eigenValues.y) / |
---|
241 | (-this->m31*this->m22 + this->m12*this->m23 + this->m13*eigenValues.y); |
---|
242 | |
---|
243 | eigVc2.z = 1.0f; |
---|
244 | |
---|
245 | eigVc3 = eigVc1.cross(eigVc2); |
---|
246 | |
---|
247 | eigVc2 = eigVc3.cross(eigVc1); |
---|
248 | } |
---|
249 | else if (eigenValuesCount == 1) |
---|
250 | { |
---|
251 | eigVc1 = Vector(1,0,0); |
---|
252 | eigVc2 = Vector(0,1,0); |
---|
253 | eigVc3 = Vector(0,0,1); |
---|
254 | } |
---|
255 | eigVc1.normalize(); |
---|
256 | eigVc2.normalize(); |
---|
257 | eigVc3.normalize(); |
---|
258 | |
---|
259 | if (!(eigVc1.cross(eigVc3) == eigVc2)) |
---|
260 | { |
---|
261 | eigVc3.cross(eigVc1); |
---|
262 | // eigVc2.debug(); |
---|
263 | } |
---|
264 | /* printf("ok\n")*/; |
---|
265 | } |
---|
266 | |
---|
267 | /** |
---|
268 | * prints out some nice debug information |
---|
269 | */ |
---|
270 | void Matrix::debug() const |
---|
271 | { |
---|
272 | printf("| %f | %f | %f |\n", this->m11, this->m12, this->m13 ); |
---|
273 | printf("| %f | %f | %f |\n", this->m21, this->m22, this->m23 ); |
---|
274 | printf("| %f | %f | %f |\n", this->m31, this->m32, this->m33 ); |
---|
275 | |
---|
276 | } |
---|
277 | |
---|