1 | /* |
---|
2 | orxonox - the future of 3D-vertical-scrollers |
---|
3 | |
---|
4 | Copyright (C) 2004 orx |
---|
5 | |
---|
6 | This program is free software; you can redistribute it and/or modify |
---|
7 | it under the terms of the GNU General Public License as published by |
---|
8 | the Free Software Foundation; either version 2, or (at your option) |
---|
9 | any later version. |
---|
10 | |
---|
11 | ### File Specific: |
---|
12 | main-programmer: Christian Meyer |
---|
13 | co-programmer: ... |
---|
14 | */ |
---|
15 | |
---|
16 | /*! |
---|
17 | * @file quaternion.h |
---|
18 | * A basic 3D quaternion math framework |
---|
19 | * |
---|
20 | * Contains classes to handle vectors, lines, rotations and planes |
---|
21 | */ |
---|
22 | |
---|
23 | #ifndef __QUATERNION_H_ |
---|
24 | #define __QUATERNION_H_ |
---|
25 | |
---|
26 | #include <math.h> |
---|
27 | #include "compiler.h" |
---|
28 | //! PI the circle-constant |
---|
29 | #define PI 3.14159265359f |
---|
30 | #include "vector.h" |
---|
31 | |
---|
32 | //! Quaternion |
---|
33 | /** |
---|
34 | Class to handle 3-dimensional rotation efficiently |
---|
35 | */ |
---|
36 | class Quaternion |
---|
37 | { |
---|
38 | public: |
---|
39 | /** creates a Default quaternion (multiplicational identity Quaternion)*/ |
---|
40 | inline Quaternion () { w = 1; v = Vector(0,0,0); } |
---|
41 | /** creates a Quaternion looking into the direction v @param v: the direction @param f: the value */ |
---|
42 | inline Quaternion (const Vector& v, float f) { this->w = f; this->v = v; } |
---|
43 | Quaternion (float m[4][4]); |
---|
44 | /** turns a rotation along an axis into a Quaternion @param angle: the amount of radians to rotate @param axis: the axis to rotate around */ |
---|
45 | inline Quaternion (float angle, const Vector& axis) { w = cos(angle/2.0); v = axis * sin(angle/2.0); } |
---|
46 | Quaternion (const Vector& dir, const Vector& up); |
---|
47 | Quaternion (float roll, float pitch, float yaw); |
---|
48 | |
---|
49 | /** @param q: the Quaternion to compare with this one. @returns true if the Quaternions are the same, false otherwise */ |
---|
50 | inline bool operator== (const Quaternion& q) const { return (unlikely(this->v==q.v&&this->w==q.w))?true:false; }; |
---|
51 | /** @param f: a real value @return a Quaternion containing the quotient */ |
---|
52 | inline Quaternion operator/ (const float& f) const { return (unlikely(f==0.0)) ? Quaternion() : Quaternion(this->v/f, this->w/f); }; |
---|
53 | /** @param f: the value to divide by @returns the quaternion devided by f (this /= f) */ |
---|
54 | inline const Quaternion& operator/= (const float& f) {*this = *this / f; return *this;} |
---|
55 | /** @param f: a real value @return a Quaternion containing the product */ |
---|
56 | inline Quaternion operator* (const float& f) const { return Quaternion(this->v*f, this->w*f); }; |
---|
57 | /** @param f: the value to multiply by @returns the quaternion multiplied by f (this *= f) */ |
---|
58 | inline const Quaternion& operator*= (const float& f) {*this = *this * f; return *this;} |
---|
59 | /** @param q: another Quaternion to rotate this by @return a quaternion that represents the first one rotated by the second one (WARUNING: this operation is not commutative! e.g. (A*B) != (B*A)) */ |
---|
60 | Quaternion operator* (const Quaternion& q) const { return Quaternion(Vector(this->w*q.v.x + this->v.x*q.w + this->v.y*q.v.z - this->v.z*q.v.y, |
---|
61 | this->w*q.v.y + this->v.y*q.w + this->v.z*q.v.x - this->v.x*q.v.z, |
---|
62 | this->w*q.v.z + this->v.z*q.w + this->v.x*q.v.y - this->v.y*q.v.x), |
---|
63 | this->w*q.w - this->v.x*q.v.x - this->v.y*q.v.y - this->v.z*q.v.z); }; |
---|
64 | /** @param q: the Quaternion to multiply by @returns the quaternion multiplied by q (this *= q) */ |
---|
65 | inline const Quaternion& operator*= (const Quaternion& q) {*this = *this * q; return *this; }; |
---|
66 | /** @param q the Quaternion by which to devide @returns the division from this by q (this / q) */ |
---|
67 | inline Quaternion operator/ (const Quaternion& q) const { return *this * q.inverse(); }; |
---|
68 | /** @param q the Quaternion by which to devide @returns the division from this by q (this /= q) */ |
---|
69 | inline const Quaternion& operator/= (const Quaternion& q) { *this = *this * q.inverse(); return *this; }; |
---|
70 | /** @param q the Quaternion to add to this @returns the quaternion added with q (this + q) */ |
---|
71 | inline Quaternion operator+ (const Quaternion& q) const { return Quaternion(q.v + v, q.w + w); }; |
---|
72 | /** @param q the Quaternion to add to this @returns the quaternion added with q (this += q) */ |
---|
73 | inline const Quaternion& operator+= (const Quaternion& q) { this->v += q.v; this->w += q.w; return *this; }; |
---|
74 | /** @param q the Quaternion to substrace from this @returns the quaternion substracted by q (this - q) */ |
---|
75 | inline Quaternion operator- (const Quaternion& q) const { return Quaternion(q.v - v, q.w - w); } |
---|
76 | /** @param q the Quaternion to substrace from this @returns the quaternion substracted by q (this -= q) */ |
---|
77 | inline const Quaternion& operator-= (const Quaternion& q) { this->v -= q.v; this->w -= q.w; return *this; }; |
---|
78 | /** copy constructor @param q: the Quaternion to set this to. @returns the Quaternion q (or this) */ |
---|
79 | inline Quaternion operator= (const Quaternion& q) {this->v = q.v; this->w = q.w; return *this;} |
---|
80 | /** conjugates this Quaternion @returns the conjugate */ |
---|
81 | inline Quaternion conjugate () const { return Quaternion(Vector(-v.x, -v.y, -v.z), this->w); }; |
---|
82 | /** @returns the norm of The Quaternion */ |
---|
83 | inline float norm () const { return sqrt(w*w + v.x*v.x + v.y*v.y + v.z*v.z); }; |
---|
84 | /** @returns the inverted Quaterntion of this */ |
---|
85 | inline Quaternion inverse () const { return conjugate() / (w*w + v.x*v.x + v.y*v.y + v.z*v.z); }; |
---|
86 | /** @returns the dot Product of a Quaternion */ |
---|
87 | inline float dot (const Quaternion& q) const { return v.x*q.v.x + v.y*q.v.y + v.z*q.v.z + w*q.w; }; |
---|
88 | /** @retuns the Distance between two Quaternions */ |
---|
89 | inline float distance(const Quaternion& q) const { return 2*acos(fabsf(this->dot(q))); }; |
---|
90 | /** @param v: the Vector @return a new Vector representing v rotated by the Quaternion */ |
---|
91 | inline Vector apply (const Vector& v) const { return (*this * Quaternion(v, 0) * conjugate()).v; }; |
---|
92 | void matrix (float m[4][4]) const; |
---|
93 | /** @returns the normalized Quaternion (|this|) */ |
---|
94 | inline Quaternion getNormalized() const { float n = this->norm(); return Quaternion(this->v/n, this->w/n); }; |
---|
95 | /** normalizes the current Quaternion */ |
---|
96 | inline void normalize() { float n = this->norm(); this->v /= n; this->w/=n; }; |
---|
97 | |
---|
98 | float getHeading() const; |
---|
99 | float getAttitude() const; |
---|
100 | float getBank() const; |
---|
101 | /** @returns the rotational axis of this Quaternion */ |
---|
102 | inline Vector getSpacialAxis() const { return this->v / sin(acos(w));/*sqrt(v.x*v.x + v.y*v.y + v.z+v.z);*/ }; |
---|
103 | /** @returns the rotational angle of this Quaternion around getSpacialAxis() !! IN DEGREE !! */ |
---|
104 | inline float getSpacialAxisAngle() const { return 360.0 / M_PI * acos( this->w ); }; |
---|
105 | |
---|
106 | |
---|
107 | inline void slerpTo(const Quaternion& toQuat, float t); |
---|
108 | static Quaternion quatSlerp(const Quaternion& from, const Quaternion& to, float t); |
---|
109 | |
---|
110 | void debug() const; |
---|
111 | void debug2() const; |
---|
112 | |
---|
113 | |
---|
114 | public: |
---|
115 | Vector v; //!< Imaginary Vector |
---|
116 | float w; //!< Real part of the number |
---|
117 | }; |
---|
118 | |
---|
119 | |
---|
120 | #endif /* __QUATERNION_H_ */ |
---|
121 | |
---|