/* orxonox - the future of 3D-vertical-scrollers Copyright (C) 2004 orx This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. ### File Specific: main-programmer: Christian Meyer co-programmer: ... */ #include "vector.h" using namespace std; /** \brief add two vectors \param v: the other vector \return the sum of both vectors */ Vector Vector::operator+ (const Vector& v) const { Vector r; r.x = x + v.x; r.y = y + v.y; r.z = z + v.z; return r; } /** \brief subtract a vector from another \param v: the other vector \return the difference between the vectors */ Vector Vector::operator- (const Vector& v) const { Vector r; r.x = x - v.x; r.y = y - v.y; r.z = z - v.z; return r; } /** \brief calculate the dot product of two vectors \param v: the other vector \return the dot product of the vectors */ float Vector::operator* (const Vector& v) const { return x*v.x+y*v.y+z*v.z; } /** \brief multiply a vector with a float \param f: the factor \return the vector multipied by f */ Vector Vector::operator* (float f) const { Vector r; r.x = x * f; r.y = y * f; r.z = z * f; return r; } /** \brief divide a vector with a float \param f: the divisor \return the vector divided by f */ Vector Vector::operator/ (float f) const { Vector r; if( f == 0.0) { // Prevent divide by zero return Vector (0,0,0); } r.x = x / f; r.y = y / f; r.z = z / f; return r; } /** \brief calculate the dot product of two vectors \param v: the other vector \return the dot product of the vectors */ float Vector::dot (const Vector& v) const { return x*v.x+y*v.y+z*v.z; } /** \brief calculate the cross product of two vectors \param v: the other vector \return the cross product of the vectors */ Vector Vector::cross (const Vector& v) const { Vector r; r.x = y * v.z - z * v.y; r.y = z * v.x - x * v.z; r.z = x * v.y - y * v.x; return r; } /** \brief normalizes the vector to lenght 1.0 */ void Vector::normalize () { float l = len(); if( l == 0.0) { // Prevent divide by zero return; } x = x / l; y = y / l; z = z / l; } /** \brief calculates the lenght of the vector \return the lenght of the vector */ float Vector::len () const { return sqrt (x*x+y*y+z*z); } /** \brief calculate the angle between two vectors in radiances \param v1: a vector \param v2: another vector \return the angle between the vectors in radians */ float angle_rad (const Vector& v1, const Vector& v2) { return acos( v1 * v2 / (v1.len() * v2.len())); } /** \brief calculate the angle between two vectors in degrees \param v1: a vector \param v2: another vector \return the angle between the vectors in degrees */ float angle_deg (const Vector& v1, const Vector& v2) { float f; f = acos( v1 * v2 / (v1.len() * v2.len())); return f * 180 / PI; } /** \brief create a rotation from a vector \param v: a vector */ Rotation::Rotation (const Vector& v) { Vector x = Vector( 1, 0, 0); Vector axis = x.cross( v); axis.normalize(); float angle = angle_rad( x, v); float ca = cos(angle); float sa = sin(angle); m[0] = 1.0f+(1.0f-ca)*(axis.x*axis.x-1.0f); m[1] = -axis.z*sa+(1.0f-ca)*axis.x*axis.y; m[2] = axis.y*sa+(1.0f-ca)*axis.x*axis.z; m[3] = axis.z*sa+(1.0f-ca)*axis.x*axis.y; m[4] = 1.0f+(1.0f-ca)*(axis.y*axis.y-1.0f); m[5] = -axis.x*sa+(1.0f-ca)*axis.y*axis.z; m[6] = -axis.y*sa+(1.0f-ca)*axis.x*axis.z; m[7] = axis.x*sa+(1.0f-ca)*axis.y*axis.z; m[8] = 1.0f+(1.0f-ca)*(axis.z*axis.z-1.0f); } /** \brief creates a rotation from an axis and an angle (radians!) \param axis: the rotational axis \param angle: the angle in radians */ Rotation::Rotation (const Vector& axis, float angle) { float ca, sa; ca = cos(angle); sa = sin(angle); m[0] = 1.0f+(1.0f-ca)*(axis.x*axis.x-1.0f); m[1] = -axis.z*sa+(1.0f-ca)*axis.x*axis.y; m[2] = axis.y*sa+(1.0f-ca)*axis.x*axis.z; m[3] = axis.z*sa+(1.0f-ca)*axis.x*axis.y; m[4] = 1.0f+(1.0f-ca)*(axis.y*axis.y-1.0f); m[5] = -axis.x*sa+(1.0f-ca)*axis.y*axis.z; m[6] = -axis.y*sa+(1.0f-ca)*axis.x*axis.z; m[7] = axis.x*sa+(1.0f-ca)*axis.y*axis.z; m[8] = 1.0f+(1.0f-ca)*(axis.z*axis.z-1.0f); } /** \brief creates a rotation from euler angles (pitch/yaw/roll) \param pitch: rotation around z (in radians) \param yaw: rotation around y (in radians) \param roll: rotation around x (in radians) */ Rotation::Rotation ( float pitch, float yaw, float roll) { float cy, sy, cr, sr, cp, sp; cy = cos(yaw); sy = sin(yaw); cr = cos(roll); sr = sin(roll); cp = cos(pitch); sp = sin(pitch); m[0] = cy*cr; m[1] = -cy*sr; m[2] = sy; m[3] = cp*sr+sp*sy*cr; m[4] = cp*cr-sp*sr*sy; m[5] = -sp*cy; m[6] = sp*sr-cp*sy*cr; m[7] = sp*cr+cp*sy*sr; m[8] = cp*cy; } /** \brief creates a nullrotation (an identity rotation) */ Rotation::Rotation () { m[0] = 1.0f; m[1] = 0.0f; m[2] = 0.0f; m[3] = 0.0f; m[4] = 1.0f; m[5] = 0.0f; m[6] = 0.0f; m[7] = 0.0f; m[8] = 1.0f; } /** \brief fills the specified buffer with a 4x4 glmatrix \param buffer: Pointer to an array of 16 floats Use this to get the rotation in a gl-compatible format */ void Rotation::glmatrix (float* buffer) { buffer[0] = m[0]; buffer[1] = m[3]; buffer[2] = m[6]; buffer[3] = m[0]; buffer[4] = m[1]; buffer[5] = m[4]; buffer[6] = m[7]; buffer[7] = m[0]; buffer[8] = m[2]; buffer[9] = m[5]; buffer[10] = m[8]; buffer[11] = m[0]; buffer[12] = m[0]; buffer[13] = m[0]; buffer[14] = m[0]; buffer[15] = m[1]; } /** \brief multiplies two rotational matrices \param r: another Rotation \return the matrix product of the Rotations Use this to rotate one rotation by another */ Rotation Rotation::operator* (Rotation& r) { Rotation p(); p[0] = m[0]*r.m[0] + m[1]*r.m[3] + m[2]*r.m[6]; p[1] = m[0]*r.m[1] + m[1]*r.m[4] + m[2]*r.m[7]; p[2] = m[0]*r.m[2] + m[1]*r.m[5] + m[2]*r.m[8]; p[3] = m[3]*r.m[0] + m[4]*r.m[3] + m[5]*r.m[6]; p[4] = m[3]*r.m[1] + m[4]*r.m[4] + m[5]*r.m[7]; p[5] = m[3]*r.m[2] + m[4]*r.m[5] + m[5]*r.m[8]; p[6] = m[6]*r.m[0] + m[7]*r.m[3] + m[8]*r.m[6]; p[7] = m[6]*r.m[1] + m[7]*r.m[4] + m[8]*r.m[7]; p[8] = m[6]*r.m[2] + m[7]*r.m[5] + m[8]*r.m[8]; return p; } /** \brief rotates the vector by the given rotation \param v: a vector \param r: a rotation \return the rotated vector */ Vector rotate_vector( const Vector& v, const Rotation& r) { Vector t; t.x = v.x * r.m[0] + v.y * r.m[1] + v.z * r.m[2]; t.y = v.x * r.m[3] + v.y * r.m[4] + v.z * r.m[5]; t.z = v.x * r.m[6] + v.y * r.m[7] + v.z * r.m[8]; return t; } /** \brief calculate the distance between two lines \param l: the other line \return the distance between the lines */ float Line::distance (const Line& l) const { float q, d; Vector n = a.cross(l.a); q = n.dot(r-l.r); d = n.len(); if( d == 0.0) return 0.0; return q/d; } /** \brief calculate the distance between a line and a point \param v: the point \return the distance between the Line and the point */ float Line::distance_point (const Vector& v) const { Vector d = v-r; Vector u = a * d.dot( a); return (d - u).len(); } /** \brief calculate the two points of minimal distance of two lines \param l: the other line \return a Vector[2] (!has to be deleted after use!) containing the two points of minimal distance */ Vector* Line::footpoints (const Line& l) const { Vector* fp = new Vector[2]; Plane p = Plane (r + a.cross(l.a), r, r + a); fp[1] = p.intersect_line (l); p = Plane (fp[1], l.a); fp[0] = p.intersect_line (*this); return fp; } /** \brief calculate the length of a line \return the lenght of the line */ float Line::len() const { return a.len(); } /** \brief rotate the line by given rotation \param rot: a rotation */ void Line::rotate (const Rotation& rot) { Vector t = a + r; t = rotate_vector( t, rot); r = rotate_vector( r, rot), a = t - r; } /** \brief create a plane from three points \param a: first point \param b: second point \param c: third point */ Plane::Plane (Vector a, Vector b, Vector c) { n = (a-b).cross(c-b); k = -(n.x*b.x+n.y*b.y+n.z*b.z); } /** \brief create a plane from anchor point and normal \param n: normal vector \param p: anchor point */ Plane::Plane (Vector norm, Vector p) { n = norm; k = -(n.x*p.x+n.y*p.y+n.z*p.z); } /** \brief returns the intersection point between the plane and a line \param l: a line */ Vector Plane::intersect_line (const Line& l) const { if (n.x*l.a.x+n.y*l.a.y+n.z*l.a.z == 0.0) return Vector(0,0,0); float t = (n.x*l.r.x+n.y*l.r.y+n.z*l.r.z+k) / (n.x*l.a.x+n.y*l.a.y+n.z*l.a.z); return l.r + (l.a * t); } /** \brief returns the distance between the plane and a point \param p: a Point \return the distance between the plane and the point (can be negative) */ float Plane::distance_point (const Vector& p) const { float l = n.len(); if( l == 0.0) return 0.0; return (n.dot(p) + k) / n.len(); } /** \brief returns the side a point is located relative to a Plane \param p: a Point \return 0 if the point is contained within the Plane, positive(negative) if the point is in the positive(negative) semi-space of the Plane */ float Plane::locate_point (const Vector& p) const { return (n.dot(p) + k); }