1 | |
---|
2 | |
---|
3 | /* |
---|
4 | orxonox - the future of 3D-vertical-scrollers |
---|
5 | |
---|
6 | Copyright (C) 2004 orx |
---|
7 | |
---|
8 | This program is free software; you can redistribute it and/or modify |
---|
9 | it under the terms of the GNU General Public License as published by |
---|
10 | the Free Software Foundation; either version 2, or (at your option) |
---|
11 | any later version. |
---|
12 | |
---|
13 | ### File Specific: |
---|
14 | main-programmer: Christian Meyer |
---|
15 | co-programmer: ... |
---|
16 | */ |
---|
17 | |
---|
18 | |
---|
19 | #include "vector.h" |
---|
20 | |
---|
21 | |
---|
22 | using namespace std; |
---|
23 | |
---|
24 | /** |
---|
25 | \brief add two vectors |
---|
26 | \param v: the other vector |
---|
27 | \return the sum of both vectors |
---|
28 | */ |
---|
29 | Vector Vector::operator+ (const Vector& v) const |
---|
30 | { |
---|
31 | Vector r; |
---|
32 | |
---|
33 | r.x = x + v.x; |
---|
34 | r.y = y + v.y; |
---|
35 | r.z = z + v.z; |
---|
36 | |
---|
37 | return r; |
---|
38 | } |
---|
39 | |
---|
40 | /** |
---|
41 | \brief subtract a vector from another |
---|
42 | \param v: the other vector |
---|
43 | \return the difference between the vectors |
---|
44 | */ |
---|
45 | Vector Vector::operator- (const Vector& v) const |
---|
46 | { |
---|
47 | Vector r; |
---|
48 | |
---|
49 | r.x = x - v.x; |
---|
50 | r.y = y - v.y; |
---|
51 | r.z = z - v.z; |
---|
52 | |
---|
53 | return r; |
---|
54 | } |
---|
55 | |
---|
56 | /** |
---|
57 | \brief calculate the dot product of two vectors |
---|
58 | \param v: the other vector |
---|
59 | \return the dot product of the vectors |
---|
60 | */ |
---|
61 | float Vector::operator* (const Vector& v) const |
---|
62 | { |
---|
63 | return x*v.x+y*v.y+z*v.z; |
---|
64 | } |
---|
65 | |
---|
66 | /** |
---|
67 | \brief multiply a vector with a float |
---|
68 | \param f: the factor |
---|
69 | \return the vector multipied by f |
---|
70 | */ |
---|
71 | Vector Vector::operator* (float f) const |
---|
72 | { |
---|
73 | Vector r; |
---|
74 | |
---|
75 | r.x = x * f; |
---|
76 | r.y = y * f; |
---|
77 | r.z = z * f; |
---|
78 | |
---|
79 | return r; |
---|
80 | } |
---|
81 | |
---|
82 | /** |
---|
83 | \brief divide a vector with a float |
---|
84 | \param f: the divisor |
---|
85 | \return the vector divided by f |
---|
86 | */ |
---|
87 | Vector Vector::operator/ (float f) const |
---|
88 | { |
---|
89 | Vector r; |
---|
90 | |
---|
91 | if( f == 0.0) |
---|
92 | { |
---|
93 | // Prevent divide by zero |
---|
94 | return Vector (0,0,0); |
---|
95 | } |
---|
96 | |
---|
97 | r.x = x / f; |
---|
98 | r.y = y / f; |
---|
99 | r.z = z / f; |
---|
100 | |
---|
101 | return r; |
---|
102 | } |
---|
103 | |
---|
104 | /** |
---|
105 | \brief calculate the dot product of two vectors |
---|
106 | \param v: the other vector |
---|
107 | \return the dot product of the vectors |
---|
108 | */ |
---|
109 | float Vector::dot (const Vector& v) const |
---|
110 | { |
---|
111 | return x*v.x+y*v.y+z*v.z; |
---|
112 | } |
---|
113 | |
---|
114 | /** |
---|
115 | \brief calculate the cross product of two vectors |
---|
116 | \param v: the other vector |
---|
117 | \return the cross product of the vectors |
---|
118 | */ |
---|
119 | Vector Vector::cross (const Vector& v) const |
---|
120 | { |
---|
121 | Vector r; |
---|
122 | |
---|
123 | r.x = y * v.z - z * v.y; |
---|
124 | r.y = z * v.x - x * v.z; |
---|
125 | r.z = x * v.y - y * v.x; |
---|
126 | |
---|
127 | return r; |
---|
128 | } |
---|
129 | |
---|
130 | /** |
---|
131 | \brief normalizes the vector to lenght 1.0 |
---|
132 | */ |
---|
133 | void Vector::normalize () |
---|
134 | { |
---|
135 | float l = len(); |
---|
136 | |
---|
137 | if( l == 0.0) |
---|
138 | { |
---|
139 | // Prevent divide by zero |
---|
140 | return; |
---|
141 | } |
---|
142 | |
---|
143 | x = x / l; |
---|
144 | y = y / l; |
---|
145 | z = z / l; |
---|
146 | } |
---|
147 | |
---|
148 | /** |
---|
149 | \brief calculates the lenght of the vector |
---|
150 | \return the lenght of the vector |
---|
151 | */ |
---|
152 | float Vector::len () const |
---|
153 | { |
---|
154 | return sqrt (x*x+y*y+z*z); |
---|
155 | } |
---|
156 | |
---|
157 | /** |
---|
158 | \brief calculate the angle between two vectors in radiances |
---|
159 | \param v1: a vector |
---|
160 | \param v2: another vector |
---|
161 | \return the angle between the vectors in radians |
---|
162 | */ |
---|
163 | float angle_rad (const Vector& v1, const Vector& v2) |
---|
164 | { |
---|
165 | return acos( v1 * v2 / (v1.len() * v2.len())); |
---|
166 | } |
---|
167 | |
---|
168 | /** |
---|
169 | \brief calculate the angle between two vectors in degrees |
---|
170 | \param v1: a vector |
---|
171 | \param v2: another vector |
---|
172 | \return the angle between the vectors in degrees |
---|
173 | */ |
---|
174 | float angle_deg (const Vector& v1, const Vector& v2) |
---|
175 | { |
---|
176 | float f; |
---|
177 | f = acos( v1 * v2 / (v1.len() * v2.len())); |
---|
178 | return f * 180 / PI; |
---|
179 | } |
---|
180 | |
---|
181 | /** |
---|
182 | \brief create a rotation from a vector |
---|
183 | \param v: a vector |
---|
184 | */ |
---|
185 | Rotation::Rotation (const Vector& v) |
---|
186 | { |
---|
187 | Vector x = Vector( 1, 0, 0); |
---|
188 | Vector axis = x.cross( v); |
---|
189 | axis.normalize(); |
---|
190 | float angle = angle_rad( x, v); |
---|
191 | float ca = cos(angle); |
---|
192 | float sa = sin(angle); |
---|
193 | m[0] = 1.0f+(1.0f-ca)*(axis.x*axis.x-1.0f); |
---|
194 | m[1] = -axis.z*sa+(1.0f-ca)*axis.x*axis.y; |
---|
195 | m[2] = axis.y*sa+(1.0f-ca)*axis.x*axis.z; |
---|
196 | m[3] = axis.z*sa+(1.0f-ca)*axis.x*axis.y; |
---|
197 | m[4] = 1.0f+(1.0f-ca)*(axis.y*axis.y-1.0f); |
---|
198 | m[5] = -axis.x*sa+(1.0f-ca)*axis.y*axis.z; |
---|
199 | m[6] = -axis.y*sa+(1.0f-ca)*axis.x*axis.z; |
---|
200 | m[7] = axis.x*sa+(1.0f-ca)*axis.y*axis.z; |
---|
201 | m[8] = 1.0f+(1.0f-ca)*(axis.z*axis.z-1.0f); |
---|
202 | } |
---|
203 | |
---|
204 | /** |
---|
205 | \brief creates a rotation from an axis and an angle (radians!) |
---|
206 | \param axis: the rotational axis |
---|
207 | \param angle: the angle in radians |
---|
208 | */ |
---|
209 | Rotation::Rotation (const Vector& axis, float angle) |
---|
210 | { |
---|
211 | float ca, sa; |
---|
212 | ca = cos(angle); |
---|
213 | sa = sin(angle); |
---|
214 | m[0] = 1.0f+(1.0f-ca)*(axis.x*axis.x-1.0f); |
---|
215 | m[1] = -axis.z*sa+(1.0f-ca)*axis.x*axis.y; |
---|
216 | m[2] = axis.y*sa+(1.0f-ca)*axis.x*axis.z; |
---|
217 | m[3] = axis.z*sa+(1.0f-ca)*axis.x*axis.y; |
---|
218 | m[4] = 1.0f+(1.0f-ca)*(axis.y*axis.y-1.0f); |
---|
219 | m[5] = -axis.x*sa+(1.0f-ca)*axis.y*axis.z; |
---|
220 | m[6] = -axis.y*sa+(1.0f-ca)*axis.x*axis.z; |
---|
221 | m[7] = axis.x*sa+(1.0f-ca)*axis.y*axis.z; |
---|
222 | m[8] = 1.0f+(1.0f-ca)*(axis.z*axis.z-1.0f); |
---|
223 | } |
---|
224 | |
---|
225 | /** |
---|
226 | \brief creates a rotation from euler angles (pitch/yaw/roll) |
---|
227 | \param pitch: rotation around z (in radians) |
---|
228 | \param yaw: rotation around y (in radians) |
---|
229 | \param roll: rotation around x (in radians) |
---|
230 | */ |
---|
231 | Rotation::Rotation ( float pitch, float yaw, float roll) |
---|
232 | { |
---|
233 | float cy, sy, cr, sr, cp, sp; |
---|
234 | cy = cos(yaw); |
---|
235 | sy = sin(yaw); |
---|
236 | cr = cos(roll); |
---|
237 | sr = sin(roll); |
---|
238 | cp = cos(pitch); |
---|
239 | sp = sin(pitch); |
---|
240 | m[0] = cy*cr; |
---|
241 | m[1] = -cy*sr; |
---|
242 | m[2] = sy; |
---|
243 | m[3] = cp*sr+sp*sy*cr; |
---|
244 | m[4] = cp*cr-sp*sr*sy; |
---|
245 | m[5] = -sp*cy; |
---|
246 | m[6] = sp*sr-cp*sy*cr; |
---|
247 | m[7] = sp*cr+cp*sy*sr; |
---|
248 | m[8] = cp*cy; |
---|
249 | } |
---|
250 | |
---|
251 | /** |
---|
252 | \brief creates a nullrotation (an identity rotation) |
---|
253 | */ |
---|
254 | Rotation::Rotation () |
---|
255 | { |
---|
256 | m[0] = 1.0f; |
---|
257 | m[1] = 0.0f; |
---|
258 | m[2] = 0.0f; |
---|
259 | m[3] = 0.0f; |
---|
260 | m[4] = 1.0f; |
---|
261 | m[5] = 0.0f; |
---|
262 | m[6] = 0.0f; |
---|
263 | m[7] = 0.0f; |
---|
264 | m[8] = 1.0f; |
---|
265 | } |
---|
266 | |
---|
267 | /** |
---|
268 | \brief fills the specified buffer with a 4x4 glmatrix |
---|
269 | \param buffer: Pointer to an array of 16 floats |
---|
270 | |
---|
271 | Use this to get the rotation in a gl-compatible format |
---|
272 | */ |
---|
273 | void Rotation::glmatrix (float* buffer) |
---|
274 | { |
---|
275 | buffer[0] = m[0]; |
---|
276 | buffer[1] = m[3]; |
---|
277 | buffer[2] = m[6]; |
---|
278 | buffer[3] = m[0]; |
---|
279 | buffer[4] = m[1]; |
---|
280 | buffer[5] = m[4]; |
---|
281 | buffer[6] = m[7]; |
---|
282 | buffer[7] = m[0]; |
---|
283 | buffer[8] = m[2]; |
---|
284 | buffer[9] = m[5]; |
---|
285 | buffer[10] = m[8]; |
---|
286 | buffer[11] = m[0]; |
---|
287 | buffer[12] = m[0]; |
---|
288 | buffer[13] = m[0]; |
---|
289 | buffer[14] = m[0]; |
---|
290 | buffer[15] = m[1]; |
---|
291 | } |
---|
292 | |
---|
293 | /** |
---|
294 | \brief multiplies two rotational matrices |
---|
295 | \param r: another Rotation |
---|
296 | \return the matrix product of the Rotations |
---|
297 | |
---|
298 | Use this to rotate one rotation by another |
---|
299 | */ |
---|
300 | Rotation Rotation::operator* (const Rotation& r) |
---|
301 | { |
---|
302 | Rotation p; |
---|
303 | |
---|
304 | p.m[0] = m[0]*r.m[0] + m[1]*r.m[3] + m[2]*r.m[6]; |
---|
305 | p.m[1] = m[0]*r.m[1] + m[1]*r.m[4] + m[2]*r.m[7]; |
---|
306 | p.m[2] = m[0]*r.m[2] + m[1]*r.m[5] + m[2]*r.m[8]; |
---|
307 | |
---|
308 | p.m[3] = m[3]*r.m[0] + m[4]*r.m[3] + m[5]*r.m[6]; |
---|
309 | p.m[4] = m[3]*r.m[1] + m[4]*r.m[4] + m[5]*r.m[7]; |
---|
310 | p.m[5] = m[3]*r.m[2] + m[4]*r.m[5] + m[5]*r.m[8]; |
---|
311 | |
---|
312 | p.m[6] = m[6]*r.m[0] + m[7]*r.m[3] + m[8]*r.m[6]; |
---|
313 | p.m[7] = m[6]*r.m[1] + m[7]*r.m[4] + m[8]*r.m[7]; |
---|
314 | p.m[8] = m[6]*r.m[2] + m[7]*r.m[5] + m[8]*r.m[8]; |
---|
315 | |
---|
316 | return p; |
---|
317 | } |
---|
318 | |
---|
319 | |
---|
320 | /** |
---|
321 | \brief rotates the vector by the given rotation |
---|
322 | \param v: a vector |
---|
323 | \param r: a rotation |
---|
324 | \return the rotated vector |
---|
325 | */ |
---|
326 | Vector rotate_vector( const Vector& v, const Rotation& r) |
---|
327 | { |
---|
328 | Vector t; |
---|
329 | |
---|
330 | t.x = v.x * r.m[0] + v.y * r.m[1] + v.z * r.m[2]; |
---|
331 | t.y = v.x * r.m[3] + v.y * r.m[4] + v.z * r.m[5]; |
---|
332 | t.z = v.x * r.m[6] + v.y * r.m[7] + v.z * r.m[8]; |
---|
333 | |
---|
334 | return t; |
---|
335 | } |
---|
336 | |
---|
337 | /** |
---|
338 | \brief calculate the distance between two lines |
---|
339 | \param l: the other line |
---|
340 | \return the distance between the lines |
---|
341 | */ |
---|
342 | float Line::distance (const Line& l) const |
---|
343 | { |
---|
344 | float q, d; |
---|
345 | Vector n = a.cross(l.a); |
---|
346 | q = n.dot(r-l.r); |
---|
347 | d = n.len(); |
---|
348 | if( d == 0.0) return 0.0; |
---|
349 | return q/d; |
---|
350 | } |
---|
351 | |
---|
352 | /** |
---|
353 | \brief calculate the distance between a line and a point |
---|
354 | \param v: the point |
---|
355 | \return the distance between the Line and the point |
---|
356 | */ |
---|
357 | float Line::distance_point (const Vector& v) const |
---|
358 | { |
---|
359 | Vector d = v-r; |
---|
360 | Vector u = a * d.dot( a); |
---|
361 | return (d - u).len(); |
---|
362 | } |
---|
363 | |
---|
364 | /** |
---|
365 | \brief calculate the two points of minimal distance of two lines |
---|
366 | \param l: the other line |
---|
367 | \return a Vector[2] (!has to be deleted after use!) containing the two points of minimal distance |
---|
368 | */ |
---|
369 | Vector* Line::footpoints (const Line& l) const |
---|
370 | { |
---|
371 | Vector* fp = new Vector[2]; |
---|
372 | Plane p = Plane (r + a.cross(l.a), r, r + a); |
---|
373 | fp[1] = p.intersect_line (l); |
---|
374 | p = Plane (fp[1], l.a); |
---|
375 | fp[0] = p.intersect_line (*this); |
---|
376 | return fp; |
---|
377 | } |
---|
378 | |
---|
379 | /** |
---|
380 | \brief calculate the length of a line |
---|
381 | \return the lenght of the line |
---|
382 | */ |
---|
383 | float Line::len() const |
---|
384 | { |
---|
385 | return a.len(); |
---|
386 | } |
---|
387 | |
---|
388 | /** |
---|
389 | \brief rotate the line by given rotation |
---|
390 | \param rot: a rotation |
---|
391 | */ |
---|
392 | void Line::rotate (const Rotation& rot) |
---|
393 | { |
---|
394 | Vector t = a + r; |
---|
395 | t = rotate_vector( t, rot); |
---|
396 | r = rotate_vector( r, rot), |
---|
397 | a = t - r; |
---|
398 | } |
---|
399 | |
---|
400 | /** |
---|
401 | \brief create a plane from three points |
---|
402 | \param a: first point |
---|
403 | \param b: second point |
---|
404 | \param c: third point |
---|
405 | */ |
---|
406 | Plane::Plane (Vector a, Vector b, Vector c) |
---|
407 | { |
---|
408 | n = (a-b).cross(c-b); |
---|
409 | k = -(n.x*b.x+n.y*b.y+n.z*b.z); |
---|
410 | } |
---|
411 | |
---|
412 | /** |
---|
413 | \brief create a plane from anchor point and normal |
---|
414 | \param n: normal vector |
---|
415 | \param p: anchor point |
---|
416 | */ |
---|
417 | Plane::Plane (Vector norm, Vector p) |
---|
418 | { |
---|
419 | n = norm; |
---|
420 | k = -(n.x*p.x+n.y*p.y+n.z*p.z); |
---|
421 | } |
---|
422 | |
---|
423 | /** |
---|
424 | \brief returns the intersection point between the plane and a line |
---|
425 | \param l: a line |
---|
426 | */ |
---|
427 | Vector Plane::intersect_line (const Line& l) const |
---|
428 | { |
---|
429 | if (n.x*l.a.x+n.y*l.a.y+n.z*l.a.z == 0.0) return Vector(0,0,0); |
---|
430 | float t = (n.x*l.r.x+n.y*l.r.y+n.z*l.r.z+k) / (n.x*l.a.x+n.y*l.a.y+n.z*l.a.z); |
---|
431 | return l.r + (l.a * t); |
---|
432 | } |
---|
433 | |
---|
434 | /** |
---|
435 | \brief returns the distance between the plane and a point |
---|
436 | \param p: a Point |
---|
437 | \return the distance between the plane and the point (can be negative) |
---|
438 | */ |
---|
439 | float Plane::distance_point (const Vector& p) const |
---|
440 | { |
---|
441 | float l = n.len(); |
---|
442 | if( l == 0.0) return 0.0; |
---|
443 | return (n.dot(p) + k) / n.len(); |
---|
444 | } |
---|
445 | |
---|
446 | /** |
---|
447 | \brief returns the side a point is located relative to a Plane |
---|
448 | \param p: a Point |
---|
449 | \return 0 if the point is contained within the Plane, positive(negative) if the point is in the positive(negative) semi-space of the Plane |
---|
450 | */ |
---|
451 | float Plane::locate_point (const Vector& p) const |
---|
452 | { |
---|
453 | return (n.dot(p) + k); |
---|
454 | } |
---|