1 | /*! |
---|
2 | \file vector.h |
---|
3 | \brief A basic 3D math framework |
---|
4 | |
---|
5 | Contains classes to handle vectors, lines, rotations and planes |
---|
6 | */ |
---|
7 | |
---|
8 | #ifndef _QUATERNION_H |
---|
9 | #define _QUATERNION_H |
---|
10 | |
---|
11 | #include <math.h> |
---|
12 | //! PI the circle-constant |
---|
13 | |
---|
14 | //! Quaternion |
---|
15 | /** |
---|
16 | Class to handle 3-dimensional rotation efficiently |
---|
17 | */ |
---|
18 | class Quaternion |
---|
19 | { |
---|
20 | public: |
---|
21 | Vector v; //!< Imaginary Vector |
---|
22 | float w; //!< Real part of the number |
---|
23 | |
---|
24 | Quaternion (); |
---|
25 | Quaternion (float m[4][4]); |
---|
26 | Quaternion (float angle, const Vector& axis); |
---|
27 | Quaternion (const Vector& dir, const Vector& up); |
---|
28 | Quaternion (float roll, float pitch, float yaw); |
---|
29 | |
---|
30 | Quaternion operator/ (const float& f) const; |
---|
31 | Quaternion operator* (const float& f) const; |
---|
32 | Quaternion operator* (const Quaternion& q) const; |
---|
33 | Quaternion operator+ (const Quaternion& q) const; |
---|
34 | Quaternion operator- (const Quaternion& q) const; |
---|
35 | Quaternion conjugate () const; |
---|
36 | Quaternion inverse () const; |
---|
37 | Vector apply (Vector& f) const; |
---|
38 | float norm () const; |
---|
39 | void matrix (float m[4][4]) const; |
---|
40 | void quatSlerp(const Quaternion* from, const Quaternion* to, const float t, Quaternion* res); |
---|
41 | |
---|
42 | void debug(); |
---|
43 | private: |
---|
44 | float DELTA; //!< resolution of calculation |
---|
45 | |
---|
46 | }; |
---|
47 | |
---|
48 | |
---|
49 | /** |
---|
50 | \brief creates a multiplicational identity Quaternion |
---|
51 | */ |
---|
52 | Quaternion::Quaternion () |
---|
53 | { |
---|
54 | w = 1; |
---|
55 | v = Vector(0,0,0); |
---|
56 | } |
---|
57 | |
---|
58 | /** |
---|
59 | \brief turns a rotation along an axis into a Quaternion |
---|
60 | \param angle: the amount of radians to rotate |
---|
61 | \param axis: the axis to rotate around |
---|
62 | */ |
---|
63 | Quaternion::Quaternion (float angle, const Vector& axis) |
---|
64 | { |
---|
65 | w = cos(angle/2); |
---|
66 | v = axis * sin(angle/2); |
---|
67 | } |
---|
68 | |
---|
69 | /** |
---|
70 | \brief calculates a lookAt rotation |
---|
71 | \param dir: the direction you want to look |
---|
72 | \param up: specify what direction up should be |
---|
73 | |
---|
74 | Mathematically this determines the rotation a (0,0,1)-Vector has to undergo to point |
---|
75 | the same way as dir. If you want to use this with cameras, you'll have to reverse the |
---|
76 | dir Vector (Vector(0,0,0) - your viewing direction) or you'll point the wrong way. You |
---|
77 | can use this for meshes as well (then you do not have to reverse the vector), but keep |
---|
78 | in mind that if you do that, the model's front has to point in +z direction, and left |
---|
79 | and right should be -x or +x respectively or the mesh wont rotate correctly. |
---|
80 | */ |
---|
81 | Quaternion::Quaternion (const Vector& dir, const Vector& up) |
---|
82 | { |
---|
83 | Vector z = dir; |
---|
84 | z.normalize(); |
---|
85 | Vector x = up.cross(z); |
---|
86 | x.normalize(); |
---|
87 | Vector y = z.cross(x); |
---|
88 | |
---|
89 | float m[4][4]; |
---|
90 | m[0][0] = x.x; |
---|
91 | m[0][1] = x.y; |
---|
92 | m[0][2] = x.z; |
---|
93 | m[0][3] = 0; |
---|
94 | m[1][0] = y.x; |
---|
95 | m[1][1] = y.y; |
---|
96 | m[1][2] = y.z; |
---|
97 | m[1][3] = 0; |
---|
98 | m[2][0] = z.x; |
---|
99 | m[2][1] = z.y; |
---|
100 | m[2][2] = z.z; |
---|
101 | m[2][3] = 0; |
---|
102 | m[3][0] = 0; |
---|
103 | m[3][1] = 0; |
---|
104 | m[3][2] = 0; |
---|
105 | m[3][3] = 1; |
---|
106 | |
---|
107 | *this = Quaternion (m); |
---|
108 | } |
---|
109 | |
---|
110 | /** |
---|
111 | \brief calculates a rotation from euler angles |
---|
112 | \param roll: the roll in radians |
---|
113 | \param pitch: the pitch in radians |
---|
114 | \param yaw: the yaw in radians |
---|
115 | |
---|
116 | I DO HONESTLY NOT EXACTLY KNOW WHICH ANGLE REPRESENTS WHICH ROTATION. And I do not know |
---|
117 | in what order they are applied, I just copy-pasted the code. |
---|
118 | */ |
---|
119 | Quaternion::Quaternion (float roll, float pitch, float yaw) |
---|
120 | { |
---|
121 | float cr, cp, cy, sr, sp, sy, cpcy, spsy; |
---|
122 | |
---|
123 | // calculate trig identities |
---|
124 | cr = cos(roll/2); |
---|
125 | cp = cos(pitch/2); |
---|
126 | cy = cos(yaw/2); |
---|
127 | |
---|
128 | sr = sin(roll/2); |
---|
129 | sp = sin(pitch/2); |
---|
130 | sy = sin(yaw/2); |
---|
131 | |
---|
132 | cpcy = cp * cy; |
---|
133 | spsy = sp * sy; |
---|
134 | |
---|
135 | w = cr * cpcy + sr * spsy; |
---|
136 | v.x = sr * cpcy - cr * spsy; |
---|
137 | v.y = cr * sp * cy + sr * cp * sy; |
---|
138 | v.z = cr * cp * sy - sr * sp * cy; |
---|
139 | } |
---|
140 | |
---|
141 | /** |
---|
142 | \brief rotates one Quaternion by another |
---|
143 | \param q: another Quaternion to rotate this by |
---|
144 | \return a quaternion that represents the first one rotated by the second one (WARUNING: this operation is not commutative! e.g. (A*B) != (B*A)) |
---|
145 | */ |
---|
146 | Quaternion Quaternion::operator*(const Quaternion& q) const |
---|
147 | { |
---|
148 | float A, B, C, D, E, F, G, H; |
---|
149 | Quaternion r; |
---|
150 | |
---|
151 | A = (w + v.x)*(q.w + q.v.x); |
---|
152 | B = (v.z - v.y)*(q.v.y - q.v.z); |
---|
153 | C = (w - v.x)*(q.v.y + q.v.z); |
---|
154 | D = (v.y + v.z)*(q.w - q.v.x); |
---|
155 | E = (v.x + v.z)*(q.v.x + q.v.y); |
---|
156 | F = (v.x - v.z)*(q.v.x - q.v.y); |
---|
157 | G = (w + v.y)*(q.w - q.v.z); |
---|
158 | H = (w - v.y)*(q.w + q.v.z); |
---|
159 | |
---|
160 | r.w = B + (-E - F + G + H)/2; |
---|
161 | r.v.x = A - (E + F + G + H)/2; |
---|
162 | r.v.y = C + (E - F + G - H)/2; |
---|
163 | r.v.z = D + (E - F - G + H)/2; |
---|
164 | |
---|
165 | return r; |
---|
166 | } |
---|
167 | |
---|
168 | /** |
---|
169 | \brief add two Quaternions |
---|
170 | \param q: another Quaternion |
---|
171 | \return the sum of both Quaternions |
---|
172 | */ |
---|
173 | Quaternion Quaternion::operator+(const Quaternion& q) const |
---|
174 | { |
---|
175 | Quaternion r(*this); |
---|
176 | r.w = r.w + q.w; |
---|
177 | r.v = r.v + q.v; |
---|
178 | return r; |
---|
179 | } |
---|
180 | |
---|
181 | /** |
---|
182 | \brief subtract two Quaternions |
---|
183 | \param q: another Quaternion |
---|
184 | \return the difference of both Quaternions |
---|
185 | */ |
---|
186 | Quaternion Quaternion::operator- (const Quaternion& q) const |
---|
187 | { |
---|
188 | Quaternion r(*this); |
---|
189 | r.w = r.w - q.w; |
---|
190 | r.v = r.v - q.v; |
---|
191 | return r; |
---|
192 | } |
---|
193 | |
---|
194 | /** |
---|
195 | \brief rotate a Vector by a Quaternion |
---|
196 | \param v: the Vector |
---|
197 | \return a new Vector representing v rotated by the Quaternion |
---|
198 | */ |
---|
199 | Vector Quaternion::apply (Vector& v) const |
---|
200 | { |
---|
201 | Quaternion q; |
---|
202 | q.v = v; |
---|
203 | q.w = 0; |
---|
204 | q = *this * q * conjugate(); |
---|
205 | return q.v; |
---|
206 | } |
---|
207 | |
---|
208 | /** |
---|
209 | \brief multiply a Quaternion with a real value |
---|
210 | \param f: a real value |
---|
211 | \return a new Quaternion containing the product |
---|
212 | */ |
---|
213 | Quaternion Quaternion::operator*(const float& f) const |
---|
214 | { |
---|
215 | Quaternion r(*this); |
---|
216 | r.w = r.w*f; |
---|
217 | r.v = r.v*f; |
---|
218 | return r; |
---|
219 | } |
---|
220 | |
---|
221 | /** |
---|
222 | \brief divide a Quaternion by a real value |
---|
223 | \param f: a real value |
---|
224 | \return a new Quaternion containing the quotient |
---|
225 | */ |
---|
226 | Quaternion Quaternion::operator/(const float& f) const |
---|
227 | { |
---|
228 | if( f == 0) return Quaternion(); |
---|
229 | Quaternion r(*this); |
---|
230 | r.w = r.w/f; |
---|
231 | r.v = r.v/f; |
---|
232 | return r; |
---|
233 | } |
---|
234 | |
---|
235 | /** |
---|
236 | \brief calculate the conjugate value of the Quaternion |
---|
237 | \return the conjugate Quaternion |
---|
238 | */ |
---|
239 | Quaternion Quaternion::conjugate() const |
---|
240 | { |
---|
241 | Quaternion r(*this); |
---|
242 | r.v = Vector() - r.v; |
---|
243 | return r; |
---|
244 | } |
---|
245 | |
---|
246 | /** |
---|
247 | \brief calculate the norm of the Quaternion |
---|
248 | \return the norm of The Quaternion |
---|
249 | */ |
---|
250 | float Quaternion::norm() const |
---|
251 | { |
---|
252 | return w*w + v.x*v.x + v.y*v.y + v.z*v.z; |
---|
253 | } |
---|
254 | |
---|
255 | /** |
---|
256 | \brief calculate the inverse value of the Quaternion |
---|
257 | \return the inverse Quaternion |
---|
258 | |
---|
259 | Note that this is equal to conjugate() if the Quaternion's norm is 1 |
---|
260 | */ |
---|
261 | Quaternion Quaternion::inverse() const |
---|
262 | { |
---|
263 | float n = norm(); |
---|
264 | if (n != 0) |
---|
265 | { |
---|
266 | return conjugate() / norm(); |
---|
267 | } |
---|
268 | else return Quaternion(); |
---|
269 | } |
---|
270 | |
---|
271 | /** |
---|
272 | \brief convert the Quaternion to a 4x4 rotational glMatrix |
---|
273 | \param m: a buffer to store the Matrix in |
---|
274 | */ |
---|
275 | void Quaternion::matrix (float m[4][4]) const |
---|
276 | { |
---|
277 | float wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2; |
---|
278 | |
---|
279 | // calculate coefficients |
---|
280 | x2 = v.x + v.x; |
---|
281 | y2 = v.y + v.y; |
---|
282 | z2 = v.z + v.z; |
---|
283 | xx = v.x * x2; xy = v.x * y2; xz = v.x * z2; |
---|
284 | yy = v.y * y2; yz = v.y * z2; zz = v.z * z2; |
---|
285 | wx = w * x2; wy = w * y2; wz = w * z2; |
---|
286 | |
---|
287 | m[0][0] = 1.0 - (yy + zz); m[1][0] = xy - wz; |
---|
288 | m[2][0] = xz + wy; m[3][0] = 0.0; |
---|
289 | |
---|
290 | m[0][1] = xy + wz; m[1][1] = 1.0 - (xx + zz); |
---|
291 | m[2][1] = yz - wx; m[3][1] = 0.0; |
---|
292 | |
---|
293 | m[0][2] = xz - wy; m[1][2] = yz + wx; |
---|
294 | m[2][2] = 1.0 - (xx + yy); m[3][2] = 0.0; |
---|
295 | |
---|
296 | m[0][3] = 0; m[1][3] = 0; |
---|
297 | m[2][3] = 0; m[3][3] = 1; |
---|
298 | } |
---|
299 | |
---|
300 | /** |
---|
301 | \brief performs a smooth move. |
---|
302 | \param from from where |
---|
303 | \param to to where |
---|
304 | \param t the time this transformation should take |
---|
305 | \param res The approximation-density |
---|
306 | */ |
---|
307 | void Quaternion::quatSlerp(const Quaternion* from, const Quaternion* to, float t, Quaternion* res) |
---|
308 | { |
---|
309 | float tol[4]; |
---|
310 | double omega, cosom, sinom, scale0, scale1; |
---|
311 | DELTA = 0.2; |
---|
312 | |
---|
313 | cosom = from->v.x * to->v.x + from->v.y * to->v.y + from->v.z * to->v.z + from->w * to->w; |
---|
314 | |
---|
315 | if( cosom < 0.0 ) |
---|
316 | { |
---|
317 | cosom = -cosom; |
---|
318 | tol[0] = -to->v.x; |
---|
319 | tol[1] = -to->v.y; |
---|
320 | tol[2] = -to->v.z; |
---|
321 | tol[3] = -to->w; |
---|
322 | } |
---|
323 | else |
---|
324 | { |
---|
325 | tol[0] = to->v.x; |
---|
326 | tol[1] = to->v.y; |
---|
327 | tol[2] = to->v.z; |
---|
328 | tol[3] = to->w; |
---|
329 | } |
---|
330 | |
---|
331 | //if( (1.0 - cosom) > DELTA ) |
---|
332 | //{ |
---|
333 | omega = acos(cosom); |
---|
334 | sinom = sin(omega); |
---|
335 | scale0 = sin((1.0 - t) * omega) / sinom; |
---|
336 | scale1 = sin(t * omega) / sinom; |
---|
337 | //} |
---|
338 | /* |
---|
339 | else |
---|
340 | { |
---|
341 | scale0 = 1.0 - t; |
---|
342 | scale1 = t; |
---|
343 | } |
---|
344 | */ |
---|
345 | res->v.x = scale0 * from->v.x + scale1 * tol[0]; |
---|
346 | res->v.y = scale0 * from->v.y + scale1 * tol[1]; |
---|
347 | res->v.z = scale0 * from->v.z + scale1 * tol[2]; |
---|
348 | res->w = scale0 * from->w + scale1 * tol[3]; |
---|
349 | } |
---|
350 | |
---|
351 | |
---|
352 | /** |
---|
353 | \brief convert a rotational 4x4 glMatrix into a Quaternion |
---|
354 | \param m: a 4x4 matrix in glMatrix order |
---|
355 | */ |
---|
356 | Quaternion::Quaternion (float m[4][4]) |
---|
357 | { |
---|
358 | |
---|
359 | float tr, s, q[4]; |
---|
360 | int i, j, k; |
---|
361 | |
---|
362 | int nxt[3] = {1, 2, 0}; |
---|
363 | |
---|
364 | tr = m[0][0] + m[1][1] + m[2][2]; |
---|
365 | |
---|
366 | // check the diagonal |
---|
367 | if (tr > 0.0) |
---|
368 | { |
---|
369 | s = sqrt (tr + 1.0); |
---|
370 | w = s / 2.0; |
---|
371 | s = 0.5 / s; |
---|
372 | v.x = (m[1][2] - m[2][1]) * s; |
---|
373 | v.y = (m[2][0] - m[0][2]) * s; |
---|
374 | v.z = (m[0][1] - m[1][0]) * s; |
---|
375 | } |
---|
376 | else |
---|
377 | { |
---|
378 | // diagonal is negative |
---|
379 | i = 0; |
---|
380 | if (m[1][1] > m[0][0]) i = 1; |
---|
381 | if (m[2][2] > m[i][i]) i = 2; |
---|
382 | j = nxt[i]; |
---|
383 | k = nxt[j]; |
---|
384 | |
---|
385 | s = sqrt ((m[i][i] - (m[j][j] + m[k][k])) + 1.0); |
---|
386 | |
---|
387 | q[i] = s * 0.5; |
---|
388 | |
---|
389 | if (s != 0.0) s = 0.5 / s; |
---|
390 | |
---|
391 | q[3] = (m[j][k] - m[k][j]) * s; |
---|
392 | q[j] = (m[i][j] + m[j][i]) * s; |
---|
393 | q[k] = (m[i][k] + m[k][i]) * s; |
---|
394 | |
---|
395 | v.x = q[0]; |
---|
396 | v.y = q[1]; |
---|
397 | v.z = q[2]; |
---|
398 | w = q[3]; |
---|
399 | } |
---|
400 | } |
---|
401 | |
---|
402 | /** |
---|
403 | \brief outputs some nice formated debug information about this quaternion |
---|
404 | */ |
---|
405 | void Quaternion::debug(void) |
---|
406 | { |
---|
407 | PRINT(0)("Quaternion Debug Information\n"); |
---|
408 | PRINT(0)("real a=%f; imag: x=%f y=%f z=%f\n", w, v.x, v.y, v.z); |
---|
409 | } |
---|
410 | |
---|
411 | |
---|
412 | |
---|
413 | #endif /* _QUATERNION_H */ |
---|