Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/orxonox/branches/oggPlayer/src/lib/newmat/example.cpp @ 4603

Last change on this file since 4603 was 4565, checked in by patrick, 19 years ago

orxonox/trunk: added the newmat library to the project. needs some translation in directory, temp under util/newmat. is needed by the collision detection engine to perform lin alg operations such as eigenvector decomposition. perhaps we will make our own library to do that later.

File size: 11.8 KB
Line 
1//$$ example.cpp                             Example of use of matrix package
2
3#define WANT_STREAM                  // include.h will get stream fns
4#define WANT_MATH                    // include.h will get math fns
5                                     // newmatap.h will get include.h
6
7#include "newmatap.h"                // need matrix applications
8
9#include "newmatio.h"                // need matrix output routines
10
11#ifdef use_namespace
12using namespace NEWMAT;              // access NEWMAT namespace
13#endif
14
15
16// demonstration of matrix package on linear regression problem
17
18
19void test1(Real* y, Real* x1, Real* x2, int nobs, int npred)
20{
21   cout << "\n\nTest 1 - traditional, bad\n";
22
23   // traditional sum of squares and products method of calculation
24   // but not adjusting means; maybe subject to round-off error
25
26   // make matrix of predictor values with 1s into col 1 of matrix
27   int npred1 = npred+1;        // number of cols including col of ones.
28   Matrix X(nobs,npred1);
29   X.Column(1) = 1.0;
30
31   // load x1 and x2 into X
32   //    [use << rather than = when loading arrays]
33   X.Column(2) << x1;  X.Column(3) << x2;
34
35   // vector of Y values
36   ColumnVector Y(nobs); Y << y;
37
38   // form sum of squares and product matrix
39   //    [use << rather than = for copying Matrix into SymmetricMatrix]
40   SymmetricMatrix SSQ; SSQ << X.t() * X;
41
42   // calculate estimate
43   //    [bracket last two terms to force this multiplication first]
44   //    [ .i() means inverse, but inverse is not explicity calculated]
45   ColumnVector A = SSQ.i() * (X.t() * Y);
46
47   // Get variances of estimates from diagonal elements of inverse of SSQ
48   // get inverse of SSQ - we need it for finding D
49   DiagonalMatrix D; D << SSQ.i();
50   ColumnVector V = D.AsColumn();
51
52   // Calculate fitted values and residuals
53   ColumnVector Fitted = X * A;
54   ColumnVector Residual = Y - Fitted;
55   Real ResVar = Residual.SumSquare() / (nobs-npred1);
56
57   // Get diagonals of Hat matrix (an expensive way of doing this)
58   DiagonalMatrix Hat;  Hat << X * (X.t() * X).i() * X.t();
59
60   // print out answers
61   cout << "\nEstimates and their standard errors\n\n";
62
63   // make vector of standard errors
64   ColumnVector SE(npred1);
65   for (int i=1; i<=npred1; i++) SE(i) = sqrt(V(i)*ResVar);
66   // use concatenation function to form matrix and use matrix print
67   // to get two columns
68   cout << setw(11) << setprecision(5) << (A | SE) << endl;
69
70   cout << "\nObservations, fitted value, residual value, hat value\n";
71
72   // use concatenation again; select only columns 2 to 3 of X
73   cout << setw(9) << setprecision(3) <<
74     (X.Columns(2,3) | Y | Fitted | Residual | Hat.AsColumn());
75   cout << "\n\n";
76}
77
78void test2(Real* y, Real* x1, Real* x2, int nobs, int npred)
79{
80   cout << "\n\nTest 2 - traditional, OK\n";
81
82   // traditional sum of squares and products method of calculation
83   // with subtraction of means - less subject to round-off error
84   // than test1
85
86   // make matrix of predictor values
87   Matrix X(nobs,npred);
88
89   // load x1 and x2 into X
90   //    [use << rather than = when loading arrays]
91   X.Column(1) << x1;  X.Column(2) << x2;
92
93   // vector of Y values
94   ColumnVector Y(nobs); Y << y;
95
96   // make vector of 1s
97   ColumnVector Ones(nobs); Ones = 1.0;
98
99   // calculate means (averages) of x1 and x2 [ .t() takes transpose]
100   RowVector M = Ones.t() * X / nobs;
101
102   // and subtract means from x1 and x1
103   Matrix XC(nobs,npred);
104   XC = X - Ones * M;
105
106   // do the same to Y [use Sum to get sum of elements]
107   ColumnVector YC(nobs);
108   Real m = Sum(Y) / nobs;  YC = Y - Ones * m;
109
110   // form sum of squares and product matrix
111   //    [use << rather than = for copying Matrix into SymmetricMatrix]
112   SymmetricMatrix SSQ; SSQ << XC.t() * XC;
113
114   // calculate estimate
115   //    [bracket last two terms to force this multiplication first]
116   //    [ .i() means inverse, but inverse is not explicity calculated]
117   ColumnVector A = SSQ.i() * (XC.t() * YC);
118
119   // calculate estimate of constant term
120   //    [AsScalar converts 1x1 matrix to Real]
121   Real a = m - (M * A).AsScalar();
122
123   // Get variances of estimates from diagonal elements of inverse of SSQ
124   //    [ we are taking inverse of SSQ - we need it for finding D ]
125   Matrix ISSQ = SSQ.i(); DiagonalMatrix D; D << ISSQ;
126   ColumnVector V = D.AsColumn();
127   Real v = 1.0/nobs + (M * ISSQ * M.t()).AsScalar();
128                                            // for calc variance of const
129
130   // Calculate fitted values and residuals
131   int npred1 = npred+1;
132   ColumnVector Fitted = X * A + a;
133   ColumnVector Residual = Y - Fitted;
134   Real ResVar = Residual.SumSquare() / (nobs-npred1);
135
136   // Get diagonals of Hat matrix (an expensive way of doing this)
137   Matrix X1(nobs,npred1); X1.Column(1)<<Ones; X1.Columns(2,npred1)<<X;
138   DiagonalMatrix Hat;  Hat << X1 * (X1.t() * X1).i() * X1.t();
139
140   // print out answers
141   cout << "\nEstimates and their standard errors\n\n";
142   cout.setf(ios::fixed, ios::floatfield);
143   cout << setw(11) << setprecision(5)  << a << " ";
144   cout << setw(11) << setprecision(5)  << sqrt(v*ResVar) << endl;
145   // make vector of standard errors
146   ColumnVector SE(npred);
147   for (int i=1; i<=npred; i++) SE(i) = sqrt(V(i)*ResVar);
148   // use concatenation function to form matrix and use matrix print
149   // to get two columns
150   cout << setw(11) << setprecision(5) << (A | SE) << endl;
151   cout << "\nObservations, fitted value, residual value, hat value\n";
152   cout << setw(9) << setprecision(3) <<
153     (X | Y | Fitted | Residual | Hat.AsColumn());
154   cout << "\n\n";
155}
156
157void test3(Real* y, Real* x1, Real* x2, int nobs, int npred)
158{
159   cout << "\n\nTest 3 - Cholesky\n";
160
161   // traditional sum of squares and products method of calculation
162   // with subtraction of means - using Cholesky decomposition
163
164   Matrix X(nobs,npred);
165   X.Column(1) << x1;  X.Column(2) << x2;
166   ColumnVector Y(nobs); Y << y;
167   ColumnVector Ones(nobs); Ones = 1.0;
168   RowVector M = Ones.t() * X / nobs;
169   Matrix XC(nobs,npred);
170   XC = X - Ones * M;
171   ColumnVector YC(nobs);
172   Real m = Sum(Y) / nobs;  YC = Y - Ones * m;
173   SymmetricMatrix SSQ; SSQ << XC.t() * XC;
174
175   // Cholesky decomposition of SSQ
176   LowerTriangularMatrix L = Cholesky(SSQ);
177
178   // calculate estimate
179   ColumnVector A = L.t().i() * (L.i() * (XC.t() * YC));
180
181   // calculate estimate of constant term
182   Real a = m - (M * A).AsScalar();
183
184   // Get variances of estimates from diagonal elements of invoice of SSQ
185   DiagonalMatrix D; D << L.t().i() * L.i();
186   ColumnVector V = D.AsColumn();
187   Real v = 1.0/nobs + (L.i() * M.t()).SumSquare();
188
189   // Calculate fitted values and residuals
190   int npred1 = npred+1;
191   ColumnVector Fitted = X * A + a;
192   ColumnVector Residual = Y - Fitted;
193   Real ResVar = Residual.SumSquare() / (nobs-npred1);
194
195   // Get diagonals of Hat matrix (an expensive way of doing this)
196   Matrix X1(nobs,npred1); X1.Column(1)<<Ones; X1.Columns(2,npred1)<<X;
197   DiagonalMatrix Hat;  Hat << X1 * (X1.t() * X1).i() * X1.t();
198
199   // print out answers
200   cout << "\nEstimates and their standard errors\n\n";
201   cout.setf(ios::fixed, ios::floatfield);
202   cout << setw(11) << setprecision(5)  << a << " ";
203   cout << setw(11) << setprecision(5)  << sqrt(v*ResVar) << endl;
204   ColumnVector SE(npred);
205   for (int i=1; i<=npred; i++) SE(i) = sqrt(V(i)*ResVar);
206   cout << setw(11) << setprecision(5) << (A | SE) << endl;
207   cout << "\nObservations, fitted value, residual value, hat value\n";
208   cout << setw(9) << setprecision(3) <<
209      (X | Y | Fitted | Residual | Hat.AsColumn());
210   cout << "\n\n";
211}
212
213void test4(Real* y, Real* x1, Real* x2, int nobs, int npred)
214{
215   cout << "\n\nTest 4 - QR triangularisation\n";
216
217   // QR triangularisation method
218 
219   // load data - 1s into col 1 of matrix
220   int npred1 = npred+1;
221   Matrix X(nobs,npred1); ColumnVector Y(nobs);
222   X.Column(1) = 1.0;  X.Column(2) << x1;  X.Column(3) << x2;  Y << y;
223
224   // do Householder triangularisation
225   // no need to deal with constant term separately
226   Matrix X1 = X;                 // Want copy of matrix
227   ColumnVector Y1 = Y;
228   UpperTriangularMatrix U; ColumnVector M;
229   QRZ(X1, U); QRZ(X1, Y1, M);    // Y1 now contains resids
230   ColumnVector A = U.i() * M;
231   ColumnVector Fitted = X * A;
232   Real ResVar = Y1.SumSquare() / (nobs-npred1);
233
234   // get variances of estimates
235   U = U.i(); DiagonalMatrix D; D << U * U.t();
236
237   // Get diagonals of Hat matrix
238   DiagonalMatrix Hat;  Hat << X1 * X1.t();
239
240   // print out answers
241   cout << "\nEstimates and their standard errors\n\n";
242   ColumnVector SE(npred1);
243   for (int i=1; i<=npred1; i++) SE(i) = sqrt(D(i)*ResVar);
244   cout << setw(11) << setprecision(5) << (A | SE) << endl;
245   cout << "\nObservations, fitted value, residual value, hat value\n";
246   cout << setw(9) << setprecision(3) << 
247      (X.Columns(2,3) | Y | Fitted | Y1 | Hat.AsColumn());
248   cout << "\n\n";
249}
250
251void test5(Real* y, Real* x1, Real* x2, int nobs, int npred)
252{
253   cout << "\n\nTest 5 - singular value\n";
254
255   // Singular value decomposition method
256 
257   // load data - 1s into col 1 of matrix
258   int npred1 = npred+1;
259   Matrix X(nobs,npred1); ColumnVector Y(nobs);
260   X.Column(1) = 1.0;  X.Column(2) << x1;  X.Column(3) << x2;  Y << y;
261
262   // do SVD
263   Matrix U, V; DiagonalMatrix D;
264   SVD(X,D,U,V);                              // X = U * D * V.t()
265   ColumnVector Fitted = U.t() * Y;
266   ColumnVector A = V * ( D.i() * Fitted );
267   Fitted = U * Fitted;
268   ColumnVector Residual = Y - Fitted;
269   Real ResVar = Residual.SumSquare() / (nobs-npred1);
270
271   // get variances of estimates
272   D << V * (D * D).i() * V.t();
273
274   // Get diagonals of Hat matrix
275   DiagonalMatrix Hat;  Hat << U * U.t();
276
277   // print out answers
278   cout << "\nEstimates and their standard errors\n\n";
279   ColumnVector SE(npred1);
280   for (int i=1; i<=npred1; i++) SE(i) = sqrt(D(i)*ResVar);
281   cout << setw(11) << setprecision(5) << (A | SE) << endl;
282   cout << "\nObservations, fitted value, residual value, hat value\n";
283   cout << setw(9) << setprecision(3) << 
284      (X.Columns(2,3) | Y | Fitted | Residual | Hat.AsColumn());
285   cout << "\n\n";
286}
287
288int main()
289{
290   cout << "\nDemonstration of Matrix package\n";
291   cout << "\nPrint a real number (may help lost memory test): " << 3.14159265 << "\n";
292
293   // Test for any memory not deallocated after running this program
294   Real* s1; { ColumnVector A(8000); s1 = A.Store(); }
295
296   {
297      // the data
298
299#ifndef ATandT
300      Real y[]  = { 8.3, 5.5, 8.0, 8.5, 5.7, 4.4, 6.3, 7.9, 9.1 };
301      Real x1[] = { 2.4, 1.8, 2.4, 3.0, 2.0, 1.2, 2.0, 2.7, 3.6 };
302      Real x2[] = { 1.7, 0.9, 1.6, 1.9, 0.5, 0.6, 1.1, 1.0, 0.5 };
303#else             // for compilers that do not understand aggregrates
304      Real y[9], x1[9], x2[9];
305      y[0]=8.3; y[1]=5.5; y[2]=8.0; y[3]=8.5; y[4]=5.7;
306      y[5]=4.4; y[6]=6.3; y[7]=7.9; y[8]=9.1;
307      x1[0]=2.4; x1[1]=1.8; x1[2]=2.4; x1[3]=3.0; x1[4]=2.0;
308      x1[5]=1.2; x1[6]=2.0; x1[7]=2.7; x1[8]=3.6;
309      x2[0]=1.7; x2[1]=0.9; x2[2]=1.6; x2[3]=1.9; x2[4]=0.5;
310      x2[5]=0.6; x2[6]=1.1; x2[7]=1.0; x2[8]=0.5;
311#endif
312
313      int nobs = 9;                           // number of observations
314      int npred = 2;                          // number of predictor values
315
316      // we want to find the values of a,a1,a2 to give the best
317      // fit of y[i] with a0 + a1*x1[i] + a2*x2[i]
318      // Also print diagonal elements of hat matrix, X*(X.t()*X).i()*X.t()
319
320      // this example demonstrates five methods of calculation
321
322      Try
323      {
324         test1(y, x1, x2, nobs, npred);
325         test2(y, x1, x2, nobs, npred);
326         test3(y, x1, x2, nobs, npred);
327         test4(y, x1, x2, nobs, npred);
328         test5(y, x1, x2, nobs, npred);
329      }
330      CatchAll { cout << Exception::what(); }
331   }
332
333#ifdef DO_FREE_CHECK
334   FreeCheck::Status();
335#endif
336   Real* s2; { ColumnVector A(8000); s2 = A.Store(); }
337   cout << "\n\nThe following test does not work with all compilers - see documentation\n";
338   cout << "Checking for lost memory: "
339      << (unsigned long)s1 << " " << (unsigned long)s2 << " ";
340   if (s1 != s2) cout << " - error\n"; else cout << " - ok\n";
341
342   return 0;
343
344}
345
Note: See TracBrowser for help on using the repository browser.