1 | |
---|
2 | /* |
---|
3 | orxonox - the future of 3D-vertical-scrollers |
---|
4 | |
---|
5 | Copyright (C) 2004 orx |
---|
6 | |
---|
7 | This program is free software; you can redistribute it and/or modify |
---|
8 | it under the terms of the GNU General Public License as published by |
---|
9 | the Free Software Foundation; either version 2, or (at your option) |
---|
10 | any later version. |
---|
11 | |
---|
12 | ### File Specific: |
---|
13 | main-programmer: Benjamin Grauer |
---|
14 | co-programmer: ... |
---|
15 | |
---|
16 | \todo Null-Parent => center of the coord system - singleton |
---|
17 | \todo Smooth-Parent: delay, speed |
---|
18 | \todo destroy the stuff again, delete... |
---|
19 | */ |
---|
20 | |
---|
21 | #include "matrix.h" |
---|
22 | |
---|
23 | Matrix::Matrix (size_t row, size_t col) |
---|
24 | { |
---|
25 | _m = new base_mat( row, col, 0); |
---|
26 | } |
---|
27 | |
---|
28 | // copy constructor |
---|
29 | Matrix::Matrix (const Matrix& m) |
---|
30 | { |
---|
31 | _m = m._m; |
---|
32 | _m->Refcnt++; |
---|
33 | } |
---|
34 | |
---|
35 | // Internal copy constructor |
---|
36 | void Matrix::clone () |
---|
37 | { |
---|
38 | _m->Refcnt--; |
---|
39 | _m = new base_mat( _m->Row, _m->Col, _m->Val); |
---|
40 | } |
---|
41 | |
---|
42 | // destructor |
---|
43 | Matrix::~Matrix () |
---|
44 | { |
---|
45 | if (--_m->Refcnt == 0) delete _m; |
---|
46 | } |
---|
47 | |
---|
48 | // assignment operator |
---|
49 | Matrix& Matrix::operator = (const Matrix& m) |
---|
50 | { |
---|
51 | m._m->Refcnt++; |
---|
52 | if (--_m->Refcnt == 0) delete _m; |
---|
53 | _m = m._m; |
---|
54 | return *this; |
---|
55 | } |
---|
56 | |
---|
57 | // reallocation method |
---|
58 | void Matrix::realloc (size_t row, size_t col) |
---|
59 | { |
---|
60 | if (row == _m->RowSiz && col == _m->ColSiz) |
---|
61 | { |
---|
62 | _m->Row = _m->RowSiz; |
---|
63 | _m->Col = _m->ColSiz; |
---|
64 | return; |
---|
65 | } |
---|
66 | |
---|
67 | base_mat *m1 = new base_mat( row, col, NULL); |
---|
68 | size_t colSize = min(_m->Col,col) * sizeof(float); |
---|
69 | size_t minRow = min(_m->Row,row); |
---|
70 | |
---|
71 | for (size_t i=0; i < minRow; i++) |
---|
72 | memcpy( m1->Val[i], _m->Val[i], colSize); |
---|
73 | |
---|
74 | if (--_m->Refcnt == 0) |
---|
75 | delete _m; |
---|
76 | _m = m1; |
---|
77 | |
---|
78 | return; |
---|
79 | } |
---|
80 | |
---|
81 | // public method for resizing Matrix |
---|
82 | void Matrix::SetSize (size_t row, size_t col) |
---|
83 | { |
---|
84 | size_t i,j; |
---|
85 | size_t oldRow = _m->Row; |
---|
86 | size_t oldCol = _m->Col; |
---|
87 | |
---|
88 | if (row != _m->RowSiz || col != _m->ColSiz) |
---|
89 | realloc( row, col); |
---|
90 | |
---|
91 | for (i=oldRow; i < row; i++) |
---|
92 | for (j=0; j < col; j++) |
---|
93 | _m->Val[i][j] = float(0); |
---|
94 | |
---|
95 | for (i=0; i < row; i++) |
---|
96 | for (j=oldCol; j < col; j++) |
---|
97 | _m->Val[i][j] = float(0); |
---|
98 | |
---|
99 | return; |
---|
100 | } |
---|
101 | |
---|
102 | // subscript operator to get/set individual elements |
---|
103 | float& Matrix::operator () (size_t row, size_t col) |
---|
104 | { |
---|
105 | if (row >= _m->Row || col >= _m->Col) |
---|
106 | printf( "Matrix::operator(): Index out of range!\n"); |
---|
107 | if (_m->Refcnt > 1) clone(); |
---|
108 | return _m->Val[row][col]; |
---|
109 | } |
---|
110 | |
---|
111 | // subscript operator to get/set individual elements |
---|
112 | float Matrix::operator () (size_t row, size_t col) const |
---|
113 | { |
---|
114 | if (row >= _m->Row || col >= _m->Col) |
---|
115 | printf( "Matrix::operator(): Index out of range!\n"); |
---|
116 | return _m->Val[row][col]; |
---|
117 | } |
---|
118 | |
---|
119 | // input stream function |
---|
120 | istream& operator >> (istream& istrm, Matrix& m) |
---|
121 | { |
---|
122 | for (size_t i=0; i < m.RowNo(); i++) |
---|
123 | for (size_t j=0; j < m.ColNo(); j++) |
---|
124 | { |
---|
125 | float x; |
---|
126 | istrm >> x; |
---|
127 | m(i,j) = x; |
---|
128 | } |
---|
129 | return istrm; |
---|
130 | } |
---|
131 | |
---|
132 | // output stream function |
---|
133 | ostream& operator << (ostream& ostrm, const Matrix& m) |
---|
134 | { |
---|
135 | for (size_t i=0; i < m.RowNo(); i++) |
---|
136 | { |
---|
137 | for (size_t j=0; j < m.ColNo(); j++) |
---|
138 | { |
---|
139 | float x = m(i,j); |
---|
140 | ostrm << x << '\t'; |
---|
141 | } |
---|
142 | ostrm << endl; |
---|
143 | } |
---|
144 | return ostrm; |
---|
145 | } |
---|
146 | |
---|
147 | |
---|
148 | // logical equal-to operator |
---|
149 | bool operator == (const Matrix& m1, const Matrix& m2) |
---|
150 | { |
---|
151 | if (m1.RowNo() != m2.RowNo() || m1.ColNo() != m2.ColNo()) |
---|
152 | return false; |
---|
153 | |
---|
154 | for (size_t i=0; i < m1.RowNo(); i++) |
---|
155 | for (size_t j=0; j < m1.ColNo(); j++) |
---|
156 | if (m1(i,j) != m2(i,j)) |
---|
157 | return false; |
---|
158 | |
---|
159 | return true; |
---|
160 | } |
---|
161 | |
---|
162 | // logical no-equal-to operator |
---|
163 | bool operator != (const Matrix& m1, const Matrix& m2) |
---|
164 | { |
---|
165 | return (m1 == m2) ? false : true; |
---|
166 | } |
---|
167 | |
---|
168 | // combined addition and assignment operator |
---|
169 | Matrix& Matrix::operator += (const Matrix& m) |
---|
170 | { |
---|
171 | if (_m->Row != m._m->Row || _m->Col != m._m->Col) |
---|
172 | printf("Matrix::operator+= : Inconsistent Matrix sizes in addition!\n"); |
---|
173 | if (_m->Refcnt > 1) clone(); |
---|
174 | for (size_t i=0; i < m._m->Row; i++) |
---|
175 | for (size_t j=0; j < m._m->Col; j++) |
---|
176 | _m->Val[i][j] += m._m->Val[i][j]; |
---|
177 | return *this; |
---|
178 | } |
---|
179 | |
---|
180 | // combined subtraction and assignment operator |
---|
181 | Matrix& Matrix::operator -= (const Matrix& m) |
---|
182 | { |
---|
183 | if (_m->Row != m._m->Row || _m->Col != m._m->Col) |
---|
184 | printf( "Matrix::operator-= : Inconsistent Matrix sizes in subtraction!\n"); |
---|
185 | if (_m->Refcnt > 1) clone(); |
---|
186 | for (size_t i=0; i < m._m->Row; i++) |
---|
187 | for (size_t j=0; j < m._m->Col; j++) |
---|
188 | _m->Val[i][j] -= m._m->Val[i][j]; |
---|
189 | return *this; |
---|
190 | } |
---|
191 | |
---|
192 | // combined scalar multiplication and assignment operator |
---|
193 | Matrix& |
---|
194 | Matrix::operator *= (const float& c) |
---|
195 | { |
---|
196 | if (_m->Refcnt > 1) clone(); |
---|
197 | for (size_t i=0; i < _m->Row; i++) |
---|
198 | for (size_t j=0; j < _m->Col; j++) |
---|
199 | _m->Val[i][j] *= c; |
---|
200 | return *this; |
---|
201 | } |
---|
202 | |
---|
203 | // combined Matrix multiplication and assignment operator |
---|
204 | Matrix& |
---|
205 | Matrix::operator *= (const Matrix& m) |
---|
206 | { |
---|
207 | if (_m->Col != m._m->Row) |
---|
208 | printf( "Matrix::operator*= : Inconsistent Matrix sizes in multiplication!\n"); |
---|
209 | |
---|
210 | Matrix temp(_m->Row,m._m->Col); |
---|
211 | |
---|
212 | for (size_t i=0; i < _m->Row; i++) |
---|
213 | for (size_t j=0; j < m._m->Col; j++) |
---|
214 | { |
---|
215 | temp._m->Val[i][j] = float(0); |
---|
216 | for (size_t k=0; k < _m->Col; k++) |
---|
217 | temp._m->Val[i][j] += _m->Val[i][k] * m._m->Val[k][j]; |
---|
218 | } |
---|
219 | *this = temp; |
---|
220 | |
---|
221 | return *this; |
---|
222 | } |
---|
223 | |
---|
224 | // combined scalar division and assignment operator |
---|
225 | Matrix& |
---|
226 | Matrix::operator /= (const float& c) |
---|
227 | { |
---|
228 | if (_m->Refcnt > 1) clone(); |
---|
229 | for (size_t i=0; i < _m->Row; i++) |
---|
230 | for (size_t j=0; j < _m->Col; j++) |
---|
231 | _m->Val[i][j] /= c; |
---|
232 | |
---|
233 | return *this; |
---|
234 | } |
---|
235 | |
---|
236 | // combined power and assignment operator |
---|
237 | Matrix& |
---|
238 | Matrix::operator ^= (const size_t& pow) |
---|
239 | { |
---|
240 | Matrix temp(*this); |
---|
241 | |
---|
242 | for (size_t i=2; i <= pow; i++) |
---|
243 | *this *= temp; // changed from *this = *this * temp; |
---|
244 | |
---|
245 | return *this; |
---|
246 | } |
---|
247 | |
---|
248 | // unary negation operator |
---|
249 | Matrix |
---|
250 | Matrix::operator - () |
---|
251 | { |
---|
252 | Matrix temp(_m->Row,_m->Col); |
---|
253 | |
---|
254 | for (size_t i=0; i < _m->Row; i++) |
---|
255 | for (size_t j=0; j < _m->Col; j++) |
---|
256 | temp._m->Val[i][j] = - _m->Val[i][j]; |
---|
257 | |
---|
258 | return temp; |
---|
259 | } |
---|
260 | |
---|
261 | // binary addition operator |
---|
262 | Matrix |
---|
263 | operator + (const Matrix& m1, const Matrix& m2) |
---|
264 | { |
---|
265 | Matrix temp = m1; |
---|
266 | temp += m2; |
---|
267 | return temp; |
---|
268 | } |
---|
269 | |
---|
270 | // binary subtraction operator |
---|
271 | Matrix |
---|
272 | operator - (const Matrix& m1, const Matrix& m2) |
---|
273 | { |
---|
274 | Matrix temp = m1; |
---|
275 | temp -= m2; |
---|
276 | return temp; |
---|
277 | } |
---|
278 | |
---|
279 | // binary scalar multiplication operator |
---|
280 | Matrix |
---|
281 | operator * (const Matrix& m, const float& no) |
---|
282 | { |
---|
283 | Matrix temp = m; |
---|
284 | temp *= no; |
---|
285 | return temp; |
---|
286 | } |
---|
287 | |
---|
288 | |
---|
289 | // binary scalar multiplication operator |
---|
290 | Matrix |
---|
291 | operator * (const float& no, const Matrix& m) |
---|
292 | { |
---|
293 | return (m * no); |
---|
294 | } |
---|
295 | |
---|
296 | // binary Matrix multiplication operator |
---|
297 | Matrix |
---|
298 | operator * (const Matrix& m1, const Matrix& m2) |
---|
299 | { |
---|
300 | Matrix temp = m1; |
---|
301 | temp *= m2; |
---|
302 | return temp; |
---|
303 | } |
---|
304 | |
---|
305 | // binary scalar division operator |
---|
306 | Matrix |
---|
307 | operator / (const Matrix& m, const float& no) |
---|
308 | { |
---|
309 | return (m * (float(1) / no)); |
---|
310 | } |
---|
311 | |
---|
312 | |
---|
313 | // binary scalar division operator |
---|
314 | Matrix |
---|
315 | operator / (const float& no, const Matrix& m) |
---|
316 | { |
---|
317 | return (!m * no); |
---|
318 | } |
---|
319 | |
---|
320 | // binary Matrix division operator |
---|
321 | Matrix |
---|
322 | operator / (const Matrix& m1, const Matrix& m2) |
---|
323 | { |
---|
324 | return (m1 * !m2); |
---|
325 | } |
---|
326 | |
---|
327 | // binary power operator |
---|
328 | Matrix |
---|
329 | operator ^ (const Matrix& m, const size_t& pow) |
---|
330 | { |
---|
331 | Matrix temp = m; |
---|
332 | temp ^= pow; |
---|
333 | return temp; |
---|
334 | } |
---|
335 | |
---|
336 | // unary transpose operator |
---|
337 | Matrix |
---|
338 | operator ~ (const Matrix& m) |
---|
339 | { |
---|
340 | Matrix temp(m.ColNo(),m.RowNo()); |
---|
341 | |
---|
342 | for (size_t i=0; i < m.RowNo(); i++) |
---|
343 | for (size_t j=0; j < m.ColNo(); j++) |
---|
344 | { |
---|
345 | float x = m(i,j); |
---|
346 | temp(j,i) = x; |
---|
347 | } |
---|
348 | return temp; |
---|
349 | } |
---|
350 | |
---|
351 | // unary inversion operator |
---|
352 | Matrix |
---|
353 | operator ! (const Matrix m) |
---|
354 | { |
---|
355 | Matrix temp = m; |
---|
356 | return temp.Inv(); |
---|
357 | } |
---|
358 | |
---|
359 | // inversion function |
---|
360 | Matrix |
---|
361 | Matrix::Inv () |
---|
362 | { |
---|
363 | size_t i,j,k; |
---|
364 | float a1,a2,*rowptr; |
---|
365 | |
---|
366 | if (_m->Row != _m->Col) |
---|
367 | printf( "Matrix::operator!: Inversion of a non-square Matrix\n"); |
---|
368 | |
---|
369 | Matrix temp(_m->Row,_m->Col); |
---|
370 | if (_m->Refcnt > 1) clone(); |
---|
371 | |
---|
372 | |
---|
373 | temp.Unit(); |
---|
374 | for (k=0; k < _m->Row; k++) |
---|
375 | { |
---|
376 | int indx = pivot(k); |
---|
377 | if (indx == -1) |
---|
378 | printf( "Matrix::operator!: Inversion of a singular Matrix\n"); |
---|
379 | |
---|
380 | if (indx != 0) |
---|
381 | { |
---|
382 | rowptr = temp._m->Val[k]; |
---|
383 | temp._m->Val[k] = temp._m->Val[indx]; |
---|
384 | temp._m->Val[indx] = rowptr; |
---|
385 | } |
---|
386 | a1 = _m->Val[k][k]; |
---|
387 | for (j=0; j < _m->Row; j++) |
---|
388 | { |
---|
389 | _m->Val[k][j] /= a1; |
---|
390 | temp._m->Val[k][j] /= a1; |
---|
391 | } |
---|
392 | for (i=0; i < _m->Row; i++) |
---|
393 | if (i != k) |
---|
394 | { |
---|
395 | a2 = _m->Val[i][k]; |
---|
396 | for (j=0; j < _m->Row; j++) |
---|
397 | { |
---|
398 | _m->Val[i][j] -= a2 * _m->Val[k][j]; |
---|
399 | temp._m->Val[i][j] -= a2 * temp._m->Val[k][j]; |
---|
400 | } |
---|
401 | } |
---|
402 | } |
---|
403 | return temp; |
---|
404 | } |
---|
405 | |
---|
406 | // solve simultaneous equation |
---|
407 | Matrix |
---|
408 | Matrix::Solve (const Matrix& v) const |
---|
409 | { |
---|
410 | size_t i,j,k; |
---|
411 | float a1; |
---|
412 | |
---|
413 | if (!(_m->Row == _m->Col && _m->Col == v._m->Row)) |
---|
414 | printf( "Matrix::Solve():Inconsistent matrices!\n"); |
---|
415 | |
---|
416 | Matrix temp(_m->Row,_m->Col+v._m->Col); |
---|
417 | for (i=0; i < _m->Row; i++) |
---|
418 | { |
---|
419 | for (j=0; j < _m->Col; j++) |
---|
420 | temp._m->Val[i][j] = _m->Val[i][j]; |
---|
421 | for (k=0; k < v._m->Col; k++) |
---|
422 | temp._m->Val[i][_m->Col+k] = v._m->Val[i][k]; |
---|
423 | } |
---|
424 | for (k=0; k < _m->Row; k++) |
---|
425 | { |
---|
426 | int indx = temp.pivot(k); |
---|
427 | if (indx == -1) |
---|
428 | printf( "Matrix::Solve(): Singular Matrix!\n"); |
---|
429 | |
---|
430 | a1 = temp._m->Val[k][k]; |
---|
431 | for (j=k; j < temp._m->Col; j++) |
---|
432 | temp._m->Val[k][j] /= a1; |
---|
433 | |
---|
434 | for (i=k+1; i < _m->Row; i++) |
---|
435 | { |
---|
436 | a1 = temp._m->Val[i][k]; |
---|
437 | for (j=k; j < temp._m->Col; j++) |
---|
438 | temp._m->Val[i][j] -= a1 * temp._m->Val[k][j]; |
---|
439 | } |
---|
440 | } |
---|
441 | Matrix s(v._m->Row,v._m->Col); |
---|
442 | for (k=0; k < v._m->Col; k++) |
---|
443 | for (int m=int(_m->Row)-1; m >= 0; m--) |
---|
444 | { |
---|
445 | s._m->Val[m][k] = temp._m->Val[m][_m->Col+k]; |
---|
446 | for (j=m+1; j < _m->Col; j++) |
---|
447 | s._m->Val[m][k] -= temp._m->Val[m][j] * s._m->Val[j][k]; |
---|
448 | } |
---|
449 | return s; |
---|
450 | } |
---|
451 | |
---|
452 | // set zero to all elements of this Matrix |
---|
453 | void |
---|
454 | Matrix::Null (const size_t& row, const size_t& col) |
---|
455 | { |
---|
456 | if (row != _m->Row || col != _m->Col) |
---|
457 | realloc( row,col); |
---|
458 | |
---|
459 | if (_m->Refcnt > 1) |
---|
460 | clone(); |
---|
461 | |
---|
462 | for (size_t i=0; i < _m->Row; i++) |
---|
463 | for (size_t j=0; j < _m->Col; j++) |
---|
464 | _m->Val[i][j] = float(0); |
---|
465 | return; |
---|
466 | } |
---|
467 | |
---|
468 | // set zero to all elements of this Matrix |
---|
469 | void |
---|
470 | Matrix::Null() |
---|
471 | { |
---|
472 | if (_m->Refcnt > 1) clone(); |
---|
473 | for (size_t i=0; i < _m->Row; i++) |
---|
474 | for (size_t j=0; j < _m->Col; j++) |
---|
475 | _m->Val[i][j] = float(0); |
---|
476 | return; |
---|
477 | } |
---|
478 | |
---|
479 | // set this Matrix to unity |
---|
480 | void |
---|
481 | Matrix::Unit (const size_t& row) |
---|
482 | { |
---|
483 | if (row != _m->Row || row != _m->Col) |
---|
484 | realloc( row, row); |
---|
485 | |
---|
486 | if (_m->Refcnt > 1) |
---|
487 | clone(); |
---|
488 | |
---|
489 | for (size_t i=0; i < _m->Row; i++) |
---|
490 | for (size_t j=0; j < _m->Col; j++) |
---|
491 | _m->Val[i][j] = i == j ? float(1) : float(0); |
---|
492 | return; |
---|
493 | } |
---|
494 | |
---|
495 | // set this Matrix to unity |
---|
496 | void |
---|
497 | Matrix::Unit () |
---|
498 | { |
---|
499 | if (_m->Refcnt > 1) clone(); |
---|
500 | size_t row = min(_m->Row,_m->Col); |
---|
501 | _m->Row = _m->Col = row; |
---|
502 | |
---|
503 | for (size_t i=0; i < _m->Row; i++) |
---|
504 | for (size_t j=0; j < _m->Col; j++) |
---|
505 | _m->Val[i][j] = i == j ? float(1) : float(0); |
---|
506 | return; |
---|
507 | } |
---|
508 | |
---|
509 | // private partial pivoting method |
---|
510 | int |
---|
511 | Matrix::pivot (size_t row) |
---|
512 | { |
---|
513 | int k = int(row); |
---|
514 | double amax,temp; |
---|
515 | |
---|
516 | amax = -1; |
---|
517 | for (size_t i=row; i < _m->Row; i++) |
---|
518 | if ( (temp = abs( _m->Val[i][row])) > amax && temp != 0.0) |
---|
519 | { |
---|
520 | amax = temp; |
---|
521 | k = i; |
---|
522 | } |
---|
523 | if (_m->Val[k][row] == float(0)) |
---|
524 | return -1; |
---|
525 | if (k != int(row)) |
---|
526 | { |
---|
527 | float* rowptr = _m->Val[k]; |
---|
528 | _m->Val[k] = _m->Val[row]; |
---|
529 | _m->Val[row] = rowptr; |
---|
530 | return k; |
---|
531 | } |
---|
532 | return 0; |
---|
533 | } |
---|
534 | |
---|
535 | // calculate the determinant of a Matrix |
---|
536 | float |
---|
537 | Matrix::Det () const |
---|
538 | { |
---|
539 | size_t i,j,k; |
---|
540 | float piv,detVal = float(1); |
---|
541 | |
---|
542 | if (_m->Row != _m->Col) |
---|
543 | printf( "Matrix::Det(): Determinant a non-squareMatrix!\n"); |
---|
544 | |
---|
545 | Matrix temp(*this); |
---|
546 | if (temp._m->Refcnt > 1) temp.clone(); |
---|
547 | |
---|
548 | for (k=0; k < _m->Row; k++) |
---|
549 | { |
---|
550 | int indx = temp.pivot(k); |
---|
551 | if (indx == -1) |
---|
552 | return 0; |
---|
553 | if (indx != 0) |
---|
554 | detVal = - detVal; |
---|
555 | detVal = detVal * temp._m->Val[k][k]; |
---|
556 | for (i=k+1; i < _m->Row; i++) |
---|
557 | { |
---|
558 | piv = temp._m->Val[i][k] / temp._m->Val[k][k]; |
---|
559 | for (j=k+1; j < _m->Row; j++) |
---|
560 | temp._m->Val[i][j] -= piv * temp._m->Val[k][j]; |
---|
561 | } |
---|
562 | } |
---|
563 | return detVal; |
---|
564 | } |
---|
565 | |
---|
566 | // calculate the norm of a Matrix |
---|
567 | float |
---|
568 | Matrix::Norm () |
---|
569 | { |
---|
570 | float retVal = float(0); |
---|
571 | |
---|
572 | for (size_t i=0; i < _m->Row; i++) |
---|
573 | for (size_t j=0; j < _m->Col; j++) |
---|
574 | retVal += _m->Val[i][j] * _m->Val[i][j]; |
---|
575 | retVal = sqrt( retVal); |
---|
576 | |
---|
577 | return retVal; |
---|
578 | } |
---|
579 | |
---|
580 | // calculate the condition number of a Matrix |
---|
581 | float |
---|
582 | Matrix::Cond () |
---|
583 | { |
---|
584 | Matrix inv = ! (*this); |
---|
585 | return (Norm() * inv.Norm()); |
---|
586 | } |
---|
587 | |
---|
588 | // calculate the cofactor of a Matrix for a given element |
---|
589 | float |
---|
590 | Matrix::Cofact (size_t row, size_t col) |
---|
591 | { |
---|
592 | size_t i,i1,j,j1; |
---|
593 | |
---|
594 | if (_m->Row != _m->Col) |
---|
595 | printf( "Matrix::Cofact(): Cofactor of a non-square Matrix!\n"); |
---|
596 | |
---|
597 | if (row > _m->Row || col > _m->Col) |
---|
598 | printf( "Matrix::Cofact(): Index out of range!\n"); |
---|
599 | |
---|
600 | Matrix temp (_m->Row-1,_m->Col-1); |
---|
601 | |
---|
602 | for (i=i1=0; i < _m->Row; i++) |
---|
603 | { |
---|
604 | if (i == row) |
---|
605 | continue; |
---|
606 | for (j=j1=0; j < _m->Col; j++) |
---|
607 | { |
---|
608 | if (j == col) |
---|
609 | continue; |
---|
610 | temp._m->Val[i1][j1] = _m->Val[i][j]; |
---|
611 | j1++; |
---|
612 | } |
---|
613 | i1++; |
---|
614 | } |
---|
615 | float cof = temp.Det(); |
---|
616 | if ((row+col)%2 == 1) |
---|
617 | cof = -cof; |
---|
618 | |
---|
619 | return cof; |
---|
620 | } |
---|
621 | |
---|
622 | |
---|
623 | // calculate adjoin of a Matrix |
---|
624 | Matrix |
---|
625 | Matrix::Adj () |
---|
626 | { |
---|
627 | if (_m->Row != _m->Col) |
---|
628 | printf( "Matrix::Adj(): Adjoin of a non-square Matrix.\n"); |
---|
629 | |
---|
630 | Matrix temp(_m->Row,_m->Col); |
---|
631 | |
---|
632 | for (size_t i=0; i < _m->Row; i++) |
---|
633 | for (size_t j=0; j < _m->Col; j++) |
---|
634 | temp._m->Val[j][i] = Cofact(i,j); |
---|
635 | return temp; |
---|
636 | } |
---|
637 | |
---|
638 | // Determine if the Matrix is singular |
---|
639 | bool |
---|
640 | Matrix::IsSingular () |
---|
641 | { |
---|
642 | if (_m->Row != _m->Col) |
---|
643 | return false; |
---|
644 | return (Det() == float(0)); |
---|
645 | } |
---|
646 | |
---|
647 | // Determine if the Matrix is diagonal |
---|
648 | bool |
---|
649 | Matrix::IsDiagonal () |
---|
650 | { |
---|
651 | if (_m->Row != _m->Col) |
---|
652 | return false; |
---|
653 | for (size_t i=0; i < _m->Row; i++) |
---|
654 | for (size_t j=0; j < _m->Col; j++) |
---|
655 | if (i != j && _m->Val[i][j] != float(0)) |
---|
656 | return false; |
---|
657 | return true; |
---|
658 | } |
---|
659 | |
---|
660 | // Determine if the Matrix is scalar |
---|
661 | bool |
---|
662 | Matrix::IsScalar () |
---|
663 | { |
---|
664 | if (!IsDiagonal()) |
---|
665 | return false; |
---|
666 | float v = _m->Val[0][0]; |
---|
667 | for (size_t i=1; i < _m->Row; i++) |
---|
668 | if (_m->Val[i][i] != v) |
---|
669 | return false; |
---|
670 | return true; |
---|
671 | } |
---|
672 | |
---|
673 | // Determine if the Matrix is a unit Matrix |
---|
674 | bool |
---|
675 | Matrix::IsUnit () |
---|
676 | { |
---|
677 | if (IsScalar() && _m->Val[0][0] == float(1)) |
---|
678 | return true; |
---|
679 | return false; |
---|
680 | } |
---|
681 | |
---|
682 | // Determine if this is a null Matrix |
---|
683 | bool |
---|
684 | Matrix::IsNull () |
---|
685 | { |
---|
686 | for (size_t i=0; i < _m->Row; i++) |
---|
687 | for (size_t j=0; j < _m->Col; j++) |
---|
688 | if (_m->Val[i][j] != float(0)) |
---|
689 | return false; |
---|
690 | return true; |
---|
691 | } |
---|
692 | |
---|
693 | // Determine if the Matrix is symmetric |
---|
694 | bool |
---|
695 | Matrix::IsSymmetric () |
---|
696 | { |
---|
697 | if (_m->Row != _m->Col) |
---|
698 | return false; |
---|
699 | for (size_t i=0; i < _m->Row; i++) |
---|
700 | for (size_t j=0; j < _m->Col; j++) |
---|
701 | if (_m->Val[i][j] != _m->Val[j][i]) |
---|
702 | return false; |
---|
703 | return true; |
---|
704 | } |
---|
705 | |
---|
706 | // Determine if the Matrix is skew-symmetric |
---|
707 | bool |
---|
708 | Matrix::IsSkewSymmetric () |
---|
709 | { |
---|
710 | if (_m->Row != _m->Col) |
---|
711 | return false; |
---|
712 | for (size_t i=0; i < _m->Row; i++) |
---|
713 | for (size_t j=0; j < _m->Col; j++) |
---|
714 | if (_m->Val[i][j] != -_m->Val[j][i]) |
---|
715 | return false; |
---|
716 | return true; |
---|
717 | } |
---|
718 | |
---|
719 | // Determine if the Matrix is upper triangular |
---|
720 | bool |
---|
721 | Matrix::IsUpperTriangular () |
---|
722 | { |
---|
723 | if (_m->Row != _m->Col) |
---|
724 | return false; |
---|
725 | for (size_t i=1; i < _m->Row; i++) |
---|
726 | for (size_t j=0; j < i-1; j++) |
---|
727 | if (_m->Val[i][j] != float(0)) |
---|
728 | return false; |
---|
729 | return true; |
---|
730 | } |
---|
731 | |
---|
732 | // Determine if the Matrix is lower triangular |
---|
733 | bool |
---|
734 | Matrix::IsLowerTriangular () |
---|
735 | { |
---|
736 | if (_m->Row != _m->Col) |
---|
737 | return false; |
---|
738 | |
---|
739 | for (size_t j=1; j < _m->Col; j++) |
---|
740 | for (size_t i=0; i < j-1; i++) |
---|
741 | if (_m->Val[i][j] != float(0)) |
---|
742 | return false; |
---|
743 | |
---|
744 | return true; |
---|
745 | } |
---|
746 | |
---|