[3018] | 1 | /* |
---|
| 2 | orxonox - the future of 3D-vertical-scrollers |
---|
| 3 | |
---|
| 4 | Copyright (C) 2004 orx |
---|
| 5 | |
---|
| 6 | This program is free software; you can redistribute it and/or modify |
---|
| 7 | it under the terms of the GNU General Public License as published by |
---|
| 8 | the Free Software Foundation; either version 2, or (at your option) |
---|
| 9 | any later version. |
---|
| 10 | |
---|
| 11 | ### File Specific: |
---|
| 12 | main-programmer: Benjamin Grauer |
---|
[3365] | 13 | co-programmer: Patrick Boenzli |
---|
[3023] | 14 | |
---|
[3365] | 15 | ADD: Patrick Boenzli B-Spline |
---|
| 16 | |
---|
| 17 | |
---|
[3023] | 18 | TODO: |
---|
| 19 | local-Time implementation |
---|
| 20 | NURBS |
---|
| 21 | |
---|
[3018] | 22 | */ |
---|
| 23 | |
---|
| 24 | #include "curve.h" |
---|
[3365] | 25 | #include "matrix.h" |
---|
| 26 | #include "debug.h" |
---|
[3018] | 27 | |
---|
[3365] | 28 | #include <math.h> |
---|
| 29 | #include <stdio.h> |
---|
[3019] | 30 | |
---|
[3018] | 31 | /** |
---|
[3019] | 32 | \brief adds a new Node to the bezier Curve |
---|
| 33 | \param newNode a Vector to the position of the new node |
---|
| 34 | */ |
---|
| 35 | void Curve::addNode(const Vector& newNode) |
---|
| 36 | { |
---|
| 37 | if (nodeCount != 0 ) |
---|
| 38 | { |
---|
| 39 | currentNode = currentNode->next = new PathNode; |
---|
| 40 | } |
---|
| 41 | currentNode->position = newNode; |
---|
| 42 | currentNode->next = 0; // not sure if this really points to NULL!! |
---|
| 43 | currentNode->number = (++nodeCount); |
---|
[3365] | 44 | this->rebuild(); |
---|
[3019] | 45 | return; |
---|
| 46 | } |
---|
| 47 | |
---|
[3365] | 48 | /** |
---|
| 49 | \brief Finds a Node by its Number, and returns its Position |
---|
| 50 | \param nodeToFind the n'th node in the List of nodes |
---|
| 51 | \returns A Vector to the Position of the Node. |
---|
| 52 | */ |
---|
| 53 | Vector Curve::getNode(unsigned int nodeToFind) |
---|
| 54 | { |
---|
| 55 | if (nodeToFind > this->nodeCount) |
---|
| 56 | return Vector(0,0,0); |
---|
| 57 | PathNode* tmpNode = this->firstNode; |
---|
| 58 | for (int i = 1; i < nodeToFind; i++) |
---|
| 59 | tmpNode = tmpNode->next; |
---|
| 60 | return tmpNode->position; |
---|
| 61 | } |
---|
[3019] | 62 | |
---|
[3365] | 63 | /////////////////////////////////// |
---|
| 64 | /// Bezier Curve ////////////////// |
---|
| 65 | /////////////////////////////////// |
---|
| 66 | |
---|
[3019] | 67 | /** |
---|
[3018] | 68 | \brief Creates a new BezierCurve |
---|
| 69 | */ |
---|
| 70 | BezierCurve::BezierCurve (void) |
---|
| 71 | { |
---|
[3365] | 72 | this->derivation = 0; |
---|
| 73 | dirCurve = new BezierCurve(1); |
---|
| 74 | this->init(); |
---|
| 75 | } |
---|
| 76 | |
---|
| 77 | /** |
---|
| 78 | \brief Creates a new BezierCurve-Derivation-Curve |
---|
| 79 | */ |
---|
| 80 | BezierCurve::BezierCurve (int derivation) |
---|
| 81 | { |
---|
| 82 | this->derivation = derivation; |
---|
| 83 | dirCurve=NULL; |
---|
| 84 | this->init(); |
---|
| 85 | } |
---|
| 86 | |
---|
| 87 | /** |
---|
| 88 | \brief Deletes a BezierCurve. |
---|
| 89 | |
---|
| 90 | It does this by freeing all the space taken over from the nodes |
---|
| 91 | */ |
---|
| 92 | BezierCurve::~BezierCurve(void) |
---|
| 93 | { |
---|
| 94 | PathNode* tmpNode; |
---|
| 95 | currentNode = firstNode; |
---|
| 96 | while (tmpNode != 0) |
---|
| 97 | { |
---|
| 98 | tmpNode = currentNode; |
---|
| 99 | currentNode = currentNode->next; |
---|
| 100 | delete tmpNode; |
---|
| 101 | } |
---|
| 102 | if (dirCurve) |
---|
| 103 | delete dirCurve; |
---|
| 104 | } |
---|
| 105 | |
---|
| 106 | /** |
---|
| 107 | \brief Initializes a BezierCurve |
---|
| 108 | */ |
---|
| 109 | void BezierCurve::init(void) |
---|
| 110 | { |
---|
[3018] | 111 | nodeCount = 0; |
---|
| 112 | firstNode = new PathNode; |
---|
| 113 | currentNode = firstNode; |
---|
| 114 | |
---|
| 115 | firstNode->position = Vector (.0, .0, .0); |
---|
| 116 | firstNode->number = 0; |
---|
| 117 | firstNode->next = 0; // not sure if this really points to NULL!! |
---|
| 118 | |
---|
| 119 | return; |
---|
| 120 | } |
---|
| 121 | |
---|
| 122 | /** |
---|
[3365] | 123 | \brief Rebuilds a Curve |
---|
| 124 | */ |
---|
| 125 | void BezierCurve::rebuild(void) |
---|
| 126 | { |
---|
| 127 | PathNode* tmpNode = firstNode; |
---|
[3217] | 128 | |
---|
[3365] | 129 | // rebuilding the Curve itself |
---|
| 130 | float k=0; |
---|
| 131 | float n = nodeCount -1; |
---|
| 132 | float binCoef = 1; |
---|
| 133 | while(tmpNode) |
---|
| 134 | { |
---|
| 135 | tmpNode->factor = binCoef; |
---|
| 136 | if (tmpNode =tmpNode->next) |
---|
| 137 | { |
---|
| 138 | binCoef *=(n-k)/(k+1); |
---|
| 139 | ++k; |
---|
| 140 | } |
---|
| 141 | } |
---|
| 142 | |
---|
| 143 | // rebuilding the Derivation curve |
---|
| 144 | if(this->derivation == 0) |
---|
| 145 | { |
---|
| 146 | tmpNode = firstNode; |
---|
| 147 | delete dirCurve; |
---|
| 148 | dirCurve = new BezierCurve(1); |
---|
| 149 | while(tmpNode->next) |
---|
| 150 | { |
---|
| 151 | Vector tmpVector = (tmpNode->next->position)- (tmpNode->position); |
---|
| 152 | tmpVector.x*=(float)nodeCount; |
---|
| 153 | tmpVector.y*=(float)nodeCount; |
---|
| 154 | tmpVector.z*=(float)nodeCount; |
---|
| 155 | tmpVector.normalize(); |
---|
| 156 | this->dirCurve->addNode(tmpVector); |
---|
| 157 | tmpNode = tmpNode->next; |
---|
| 158 | } |
---|
| 159 | } |
---|
| 160 | } |
---|
| 161 | |
---|
| 162 | /** |
---|
| 163 | \brief calculates the Position on the curve |
---|
| 164 | \param t The position on the Curve (0<=t<=1) |
---|
| 165 | \return the Position on the Path |
---|
| 166 | */ |
---|
| 167 | Vector BezierCurve::calcPos(float t) |
---|
| 168 | { |
---|
| 169 | Vector ret = Vector(0.0,0.0,0.0); |
---|
| 170 | if (this->nodeCount >= 3) |
---|
| 171 | { |
---|
| 172 | PathNode* tmpNode = this->firstNode; |
---|
| 173 | double factor = pow(1.0-t,nodeCount-1); |
---|
| 174 | while(tmpNode) |
---|
| 175 | { |
---|
| 176 | ret.x += tmpNode->factor * factor * tmpNode->position.x; |
---|
| 177 | ret.y += tmpNode->factor * factor * tmpNode->position.y; |
---|
| 178 | ret.z += tmpNode->factor * factor * tmpNode->position.z; |
---|
| 179 | factor *= t/(1.0-t); // same as pow but much faster. |
---|
| 180 | |
---|
| 181 | tmpNode = tmpNode->next; |
---|
| 182 | } |
---|
| 183 | } |
---|
| 184 | else if (nodeCount == 2) |
---|
| 185 | { |
---|
| 186 | ret = this->firstNode->position *(1.0-t); |
---|
| 187 | ret = ret + this->firstNode->next->position * t; |
---|
| 188 | } |
---|
| 189 | else if (nodeCount == 1) |
---|
| 190 | ret = this->firstNode->position; |
---|
| 191 | return ret; |
---|
| 192 | } |
---|
| 193 | |
---|
| 194 | /** |
---|
| 195 | \brief Calulates the direction of the Curve at time t. |
---|
| 196 | \param The time at which to evaluate the curve. |
---|
| 197 | \returns The vvaluated Vector. |
---|
| 198 | */ |
---|
| 199 | Vector BezierCurve::calcDir (float t) |
---|
| 200 | { |
---|
| 201 | return dirCurve->calcPos(t); |
---|
| 202 | } |
---|
| 203 | |
---|
| 204 | /** |
---|
| 205 | \brief Calculates the Quaternion needed for our rotations |
---|
| 206 | \param t The time at which to evaluate the cuve. |
---|
| 207 | \returns The evaluated Quaternion. |
---|
| 208 | */ |
---|
| 209 | Quaternion BezierCurve::calcQuat (float t) |
---|
| 210 | { |
---|
| 211 | return Quaternion (calcDir(t), Vector(0,0,1)); |
---|
| 212 | } |
---|
| 213 | |
---|
| 214 | |
---|
| 215 | /** |
---|
| 216 | \brief returns the Position of the point calculated on the Curve |
---|
| 217 | \return a Vector to the calculated position |
---|
| 218 | */ |
---|
| 219 | Vector BezierCurve::getPos(void) const |
---|
| 220 | { |
---|
| 221 | return curvePoint; |
---|
| 222 | } |
---|
| 223 | |
---|
| 224 | |
---|
| 225 | |
---|
| 226 | /////////////////////////////////// |
---|
| 227 | //// Uniform Point curve ///////// |
---|
| 228 | /////////////////////////////////// |
---|
| 229 | /** |
---|
| 230 | \brief Creates a new UPointCurve |
---|
| 231 | */ |
---|
| 232 | UPointCurve::UPointCurve (void) |
---|
| 233 | { |
---|
| 234 | this->derivation = 0; |
---|
| 235 | this->init(); |
---|
| 236 | } |
---|
| 237 | |
---|
| 238 | /** |
---|
| 239 | \brief Creates a new UPointCurve-Derivation-Curve of deriavation'th degree |
---|
| 240 | */ |
---|
| 241 | UPointCurve::UPointCurve (int derivation) |
---|
| 242 | { |
---|
| 243 | this->derivation = derivation; |
---|
| 244 | dirCurve=NULL; |
---|
| 245 | this->init(); |
---|
| 246 | } |
---|
| 247 | |
---|
| 248 | /** |
---|
| 249 | \brief Deletes a UPointCurve. |
---|
| 250 | |
---|
[3018] | 251 | It does this by freeing all the space taken over from the nodes |
---|
| 252 | */ |
---|
[3365] | 253 | UPointCurve::~UPointCurve(void) |
---|
[3018] | 254 | { |
---|
| 255 | PathNode* tmpNode; |
---|
| 256 | currentNode = firstNode; |
---|
| 257 | while (tmpNode != 0) |
---|
| 258 | { |
---|
| 259 | tmpNode = currentNode; |
---|
| 260 | currentNode = currentNode->next; |
---|
| 261 | delete tmpNode; |
---|
| 262 | } |
---|
[3365] | 263 | if (dirCurve) |
---|
| 264 | delete dirCurve; |
---|
[3018] | 265 | } |
---|
| 266 | |
---|
| 267 | /** |
---|
[3365] | 268 | \brief Initializes a UPointCurve |
---|
| 269 | */ |
---|
| 270 | void UPointCurve::init(void) |
---|
| 271 | { |
---|
| 272 | nodeCount = 0; |
---|
| 273 | firstNode = new PathNode; |
---|
| 274 | currentNode = firstNode; |
---|
| 275 | |
---|
| 276 | firstNode->position = Vector (.0, .0, .0); |
---|
| 277 | firstNode->number = 0; |
---|
| 278 | firstNode->next = 0; // not sure if this really points to NULL!! |
---|
| 279 | |
---|
| 280 | return; |
---|
| 281 | } |
---|
| 282 | |
---|
| 283 | /** |
---|
| 284 | \brief Rebuilds a UPointCurve |
---|
| 285 | |
---|
| 286 | \todo very bad algorithm |
---|
| 287 | */ |
---|
| 288 | void UPointCurve::rebuild(void) |
---|
| 289 | { |
---|
| 290 | // rebuilding the Curve itself |
---|
| 291 | PathNode* tmpNode = this->firstNode; |
---|
| 292 | int i=0; |
---|
| 293 | Matrix xTmpMat = Matrix(this->nodeCount, this->nodeCount); |
---|
| 294 | Matrix yTmpMat = Matrix(this->nodeCount, this->nodeCount); |
---|
| 295 | Matrix zTmpMat = Matrix(this->nodeCount, this->nodeCount); |
---|
| 296 | Matrix xValMat = Matrix(this->nodeCount, 3); |
---|
| 297 | Matrix yValMat = Matrix(this->nodeCount, 3); |
---|
| 298 | Matrix zValMat = Matrix(this->nodeCount, 3); |
---|
| 299 | while(tmpNode) |
---|
| 300 | { |
---|
| 301 | Vector fac = Vector(1,1,1); |
---|
| 302 | for (int j = 0; j < this->nodeCount; j++) |
---|
| 303 | { |
---|
| 304 | xTmpMat(i,j) = fac.x; fac.x *= (float)i/(float)this->nodeCount;//tmpNode->position.x; |
---|
| 305 | yTmpMat(i,j) = fac.y; fac.y *= (float)i/(float)this->nodeCount;//tmpNode->position.y; |
---|
| 306 | zTmpMat(i,j) = fac.z; fac.z *= (float)i/(float)this->nodeCount;//tmpNode->position.z; |
---|
| 307 | } |
---|
| 308 | xValMat(i,0) = tmpNode->position.x; |
---|
| 309 | yValMat(i,0) = tmpNode->position.y; |
---|
| 310 | zValMat(i,0) = tmpNode->position.z; |
---|
| 311 | ++i; |
---|
| 312 | tmpNode = tmpNode->next; |
---|
| 313 | } |
---|
| 314 | tmpNode = this->firstNode; |
---|
| 315 | xValMat = xTmpMat.Inv() *= xValMat; |
---|
| 316 | yValMat = yTmpMat.Inv() *= yValMat; |
---|
| 317 | zValMat = zTmpMat.Inv() *= zValMat; |
---|
| 318 | i = 0; |
---|
| 319 | while(tmpNode) |
---|
| 320 | { |
---|
| 321 | tmpNode->vFactor.x = xValMat(i,0); |
---|
| 322 | tmpNode->vFactor.y = yValMat(i,0); |
---|
| 323 | tmpNode->vFactor.z = zValMat(i,0); |
---|
| 324 | |
---|
| 325 | i++; |
---|
| 326 | tmpNode = tmpNode->next; |
---|
| 327 | } |
---|
| 328 | } |
---|
| 329 | |
---|
| 330 | /** |
---|
[3018] | 331 | \brief calculates the Position on the curve |
---|
| 332 | \param t The position on the Curve (0<=t<=1) |
---|
| 333 | \return the Position on the Path |
---|
| 334 | */ |
---|
[3365] | 335 | Vector UPointCurve::calcPos(float t) |
---|
[3018] | 336 | { |
---|
| 337 | PathNode* tmpNode = firstNode; |
---|
| 338 | Vector ret = Vector(0.0,0.0,0.0); |
---|
[3365] | 339 | float factor = 1.0; |
---|
| 340 | while(tmpNode) |
---|
[3018] | 341 | { |
---|
[3365] | 342 | ret.x += tmpNode->vFactor.x * factor; |
---|
| 343 | ret.y += tmpNode->vFactor.y * factor; |
---|
| 344 | ret.z += tmpNode->vFactor.z * factor; |
---|
| 345 | factor *= t; |
---|
| 346 | |
---|
[3018] | 347 | tmpNode = tmpNode->next; |
---|
| 348 | } |
---|
| 349 | return ret; |
---|
| 350 | } |
---|
| 351 | |
---|
[3217] | 352 | /** |
---|
| 353 | \brief Calulates the direction of the Curve at time t. |
---|
| 354 | \param The time at which to evaluate the curve. |
---|
| 355 | \returns The vvaluated Vector. |
---|
| 356 | */ |
---|
[3365] | 357 | Vector UPointCurve::calcDir (float t) |
---|
[3018] | 358 | { |
---|
| 359 | PathNode* tmpNode = firstNode; |
---|
[3365] | 360 | Vector ret = Vector(0.0,0.0,0.0); |
---|
| 361 | float factor = 1.0/t; |
---|
| 362 | int k=0; |
---|
| 363 | while(tmpNode) |
---|
[3018] | 364 | { |
---|
[3365] | 365 | ret.x += tmpNode->vFactor.x * factor *k; |
---|
| 366 | ret.y += tmpNode->vFactor.y * factor *k; |
---|
| 367 | ret.z += tmpNode->vFactor.z * factor *k; |
---|
| 368 | factor *= t; |
---|
| 369 | k++; |
---|
[3018] | 370 | tmpNode = tmpNode->next; |
---|
| 371 | } |
---|
| 372 | ret.normalize(); |
---|
[3028] | 373 | return ret; |
---|
[3018] | 374 | } |
---|
| 375 | |
---|
[3217] | 376 | /** |
---|
| 377 | \brief Calculates the Quaternion needed for our rotations |
---|
| 378 | \param t The time at which to evaluate the cuve. |
---|
| 379 | \returns The evaluated Quaternion. |
---|
| 380 | */ |
---|
[3365] | 381 | Quaternion UPointCurve::calcQuat (float t) |
---|
[3028] | 382 | { |
---|
| 383 | return Quaternion (calcDir(t), Vector(0,0,1)); |
---|
| 384 | } |
---|
| 385 | |
---|
| 386 | |
---|
[3018] | 387 | /** |
---|
| 388 | \brief returns the Position of the point calculated on the Curve |
---|
| 389 | \return a Vector to the calculated position |
---|
| 390 | */ |
---|
[3365] | 391 | Vector UPointCurve::getPos(void) const |
---|
[3018] | 392 | { |
---|
| 393 | return curvePoint; |
---|
| 394 | } |
---|