1 | /* |
---|
2 | orxonox - the future of 3D-vertical-scrollers |
---|
3 | |
---|
4 | Copyright (C) 2004 orx |
---|
5 | |
---|
6 | This program is free software; you can redistribute it and/or modify |
---|
7 | it under the terms of the GNU General Public License as published by |
---|
8 | the Free Software Foundation; either version 2, or (at your option) |
---|
9 | any later version. |
---|
10 | |
---|
11 | ### File Specific: |
---|
12 | main-programmer: Benjamin Grauer |
---|
13 | co-programmer: Patrick Boenzli |
---|
14 | |
---|
15 | ADD: Patrick Boenzli B-Spline |
---|
16 | |
---|
17 | |
---|
18 | TODO: |
---|
19 | local-Time implementation |
---|
20 | NURBS |
---|
21 | |
---|
22 | */ |
---|
23 | |
---|
24 | #include "curve.h" |
---|
25 | #include "matrix.h" |
---|
26 | #include "debug.h" |
---|
27 | |
---|
28 | #include <math.h> |
---|
29 | #include <stdio.h> |
---|
30 | |
---|
31 | /** |
---|
32 | \brief adds a new Node to the bezier Curve |
---|
33 | \param newNode a Vector to the position of the new node |
---|
34 | */ |
---|
35 | void Curve::addNode(const Vector& newNode) |
---|
36 | { |
---|
37 | if (nodeCount != 0 ) |
---|
38 | { |
---|
39 | currentNode = currentNode->next = new PathNode; |
---|
40 | } |
---|
41 | currentNode->position = newNode; |
---|
42 | currentNode->next = 0; |
---|
43 | currentNode->number = (++nodeCount); |
---|
44 | this->rebuild(); |
---|
45 | return; |
---|
46 | } |
---|
47 | |
---|
48 | void Curve::addNode(const Vector& newNode, unsigned int insertPosition) |
---|
49 | { |
---|
50 | |
---|
51 | if (this->nodeCount == 0 || insertPosition > this->nodeCount) |
---|
52 | return addNode(newNode); |
---|
53 | |
---|
54 | if (insertPosition == 0) |
---|
55 | insertPosition = 1; |
---|
56 | |
---|
57 | PathNode* insNode = new PathNode; |
---|
58 | |
---|
59 | // relinking |
---|
60 | PathNode* tmpNode = this->firstNode; |
---|
61 | if (insertPosition > 1) |
---|
62 | { |
---|
63 | while (tmpNode->next->number != insertPosition) |
---|
64 | tmpNode= tmpNode->next; |
---|
65 | insNode->next = tmpNode->next; |
---|
66 | tmpNode->next = insNode; |
---|
67 | } |
---|
68 | else |
---|
69 | { |
---|
70 | insNode->next = this->firstNode; |
---|
71 | this->firstNode = insNode; |
---|
72 | } |
---|
73 | // renumbering |
---|
74 | insNode->number = insertPosition; |
---|
75 | tmpNode = insNode->next; |
---|
76 | while (tmpNode) |
---|
77 | { |
---|
78 | tmpNode->number++; |
---|
79 | tmpNode = tmpNode->next; |
---|
80 | } |
---|
81 | |
---|
82 | // finished |
---|
83 | insNode->position = newNode; |
---|
84 | ++nodeCount; |
---|
85 | this->rebuild(); |
---|
86 | return; |
---|
87 | } |
---|
88 | |
---|
89 | /** |
---|
90 | \brief Finds a Node by its Number, and returns its Position |
---|
91 | \param nodeToFind the n'th node in the List of nodes |
---|
92 | \returns A Vector to the Position of the Node. |
---|
93 | */ |
---|
94 | Vector Curve::getNode(unsigned int nodeToFind) |
---|
95 | { |
---|
96 | if (nodeToFind > this->nodeCount || nodeToFind < 0) |
---|
97 | return Vector(0,0,0); |
---|
98 | PathNode* tmpNode = this->firstNode; |
---|
99 | for (int i = 1; i < nodeToFind; i++) |
---|
100 | tmpNode = tmpNode->next; |
---|
101 | return tmpNode->position; |
---|
102 | } |
---|
103 | |
---|
104 | /** |
---|
105 | \brief Outputs information about the state of this Curve |
---|
106 | */ |
---|
107 | void Curve::debug(void) |
---|
108 | { |
---|
109 | printf("<<-------------------------------\n"); |
---|
110 | printf("Curve Information:\n"); |
---|
111 | printf("NodeCount: %d\n", this->nodeCount); |
---|
112 | PathNode* tmpNode = this->firstNode; |
---|
113 | while (tmpNode) |
---|
114 | { |
---|
115 | printf("node #%d: %f, %f, %f\n", tmpNode->number, tmpNode->position.x, tmpNode->position.y, tmpNode->position.z); |
---|
116 | tmpNode = tmpNode->next; |
---|
117 | } |
---|
118 | printf("------------------------------->>\n"); |
---|
119 | } |
---|
120 | |
---|
121 | |
---|
122 | /////////////////////////////////// |
---|
123 | /// Bezier Curve ////////////////// |
---|
124 | /////////////////////////////////// |
---|
125 | |
---|
126 | /** |
---|
127 | \brief Creates a new BezierCurve |
---|
128 | */ |
---|
129 | BezierCurve::BezierCurve (void) |
---|
130 | { |
---|
131 | this->derivation = 0; |
---|
132 | dirCurve = new BezierCurve(1); |
---|
133 | this->init(); |
---|
134 | } |
---|
135 | |
---|
136 | /** |
---|
137 | \brief Creates a new BezierCurve-Derivation-Curve |
---|
138 | */ |
---|
139 | BezierCurve::BezierCurve (int derivation) |
---|
140 | { |
---|
141 | this->derivation = derivation; |
---|
142 | dirCurve=NULL; |
---|
143 | this->init(); |
---|
144 | } |
---|
145 | |
---|
146 | /** |
---|
147 | \brief Deletes a BezierCurve. |
---|
148 | |
---|
149 | It does this by freeing all the space taken over from the nodes |
---|
150 | */ |
---|
151 | BezierCurve::~BezierCurve(void) |
---|
152 | { |
---|
153 | PathNode* tmpNode; |
---|
154 | currentNode = firstNode; |
---|
155 | while (tmpNode != 0) |
---|
156 | { |
---|
157 | tmpNode = currentNode; |
---|
158 | currentNode = currentNode->next; |
---|
159 | delete tmpNode; |
---|
160 | } |
---|
161 | if (dirCurve) |
---|
162 | delete dirCurve; |
---|
163 | } |
---|
164 | |
---|
165 | /** |
---|
166 | \brief Initializes a BezierCurve |
---|
167 | */ |
---|
168 | void BezierCurve::init(void) |
---|
169 | { |
---|
170 | nodeCount = 0; |
---|
171 | firstNode = new PathNode; |
---|
172 | currentNode = firstNode; |
---|
173 | |
---|
174 | firstNode->position = Vector (.0, .0, .0); |
---|
175 | firstNode->number = 0; |
---|
176 | firstNode->next = 0; // not sure if this really points to NULL!! |
---|
177 | |
---|
178 | return; |
---|
179 | } |
---|
180 | |
---|
181 | /** |
---|
182 | \brief Rebuilds a Curve |
---|
183 | */ |
---|
184 | void BezierCurve::rebuild(void) |
---|
185 | { |
---|
186 | PathNode* tmpNode = firstNode; |
---|
187 | |
---|
188 | // rebuilding the Curve itself |
---|
189 | float k=0; |
---|
190 | float n = nodeCount -1; |
---|
191 | float binCoef = 1; |
---|
192 | while(tmpNode) |
---|
193 | { |
---|
194 | tmpNode->factor = binCoef; |
---|
195 | if (tmpNode =tmpNode->next) |
---|
196 | { |
---|
197 | binCoef *=(n-k)/(k+1); |
---|
198 | ++k; |
---|
199 | } |
---|
200 | } |
---|
201 | |
---|
202 | // rebuilding the Derivation curve |
---|
203 | if(this->derivation <= 1) |
---|
204 | { |
---|
205 | tmpNode = firstNode; |
---|
206 | delete dirCurve; |
---|
207 | dirCurve = new BezierCurve(1); |
---|
208 | while(tmpNode->next) |
---|
209 | { |
---|
210 | Vector tmpVector = (tmpNode->next->position)- (tmpNode->position); |
---|
211 | tmpVector.x*=(float)nodeCount; |
---|
212 | tmpVector.y*=(float)nodeCount; |
---|
213 | tmpVector.z*=(float)nodeCount; |
---|
214 | tmpVector.normalize(); |
---|
215 | this->dirCurve->addNode(tmpVector); |
---|
216 | tmpNode = tmpNode->next; |
---|
217 | } |
---|
218 | } |
---|
219 | } |
---|
220 | |
---|
221 | /** |
---|
222 | \brief calculates the Position on the curve |
---|
223 | \param t The position on the Curve (0<=t<=1) |
---|
224 | \return the Position on the Path |
---|
225 | */ |
---|
226 | Vector BezierCurve::calcPos(float t) |
---|
227 | { |
---|
228 | Vector ret = Vector(0.0,0.0,0.0); |
---|
229 | if (this->nodeCount >= 3) |
---|
230 | { |
---|
231 | PathNode* tmpNode = this->firstNode; |
---|
232 | double factor = pow(1.0-t,nodeCount-1); |
---|
233 | while(tmpNode) |
---|
234 | { |
---|
235 | ret.x += tmpNode->factor * factor * tmpNode->position.x; |
---|
236 | ret.y += tmpNode->factor * factor * tmpNode->position.y; |
---|
237 | ret.z += tmpNode->factor * factor * tmpNode->position.z; |
---|
238 | factor *= t/(1.0-t); // same as pow but much faster. |
---|
239 | |
---|
240 | tmpNode = tmpNode->next; |
---|
241 | } |
---|
242 | } |
---|
243 | else if (nodeCount == 2) |
---|
244 | { |
---|
245 | ret = this->firstNode->position *(1.0-t); |
---|
246 | ret = ret + this->firstNode->next->position * t; |
---|
247 | } |
---|
248 | else if (nodeCount == 1) |
---|
249 | ret = this->firstNode->position; |
---|
250 | return ret; |
---|
251 | } |
---|
252 | |
---|
253 | /** |
---|
254 | \brief Calulates the direction of the Curve at time t. |
---|
255 | \param The time at which to evaluate the curve. |
---|
256 | \returns The vvaluated Vector. |
---|
257 | */ |
---|
258 | Vector BezierCurve::calcDir (float t) |
---|
259 | { |
---|
260 | return dirCurve->calcPos(t); |
---|
261 | } |
---|
262 | |
---|
263 | Vector BezierCurve::calcAcc (float t) |
---|
264 | { |
---|
265 | return dirCurve->dirCurve->calcPos(t); |
---|
266 | } |
---|
267 | |
---|
268 | /** |
---|
269 | \brief Calculates the Quaternion needed for our rotations |
---|
270 | \param t The time at which to evaluate the cuve. |
---|
271 | \returns The evaluated Quaternion. |
---|
272 | */ |
---|
273 | Quaternion BezierCurve::calcQuat (float t) |
---|
274 | { |
---|
275 | return Quaternion (calcDir(t), Vector(0,0,1)); |
---|
276 | } |
---|
277 | |
---|
278 | |
---|
279 | /** |
---|
280 | \brief returns the Position of the point calculated on the Curve |
---|
281 | \return a Vector to the calculated position |
---|
282 | */ |
---|
283 | Vector BezierCurve::getPos(void) const |
---|
284 | { |
---|
285 | return curvePoint; |
---|
286 | } |
---|
287 | |
---|
288 | |
---|
289 | |
---|
290 | /////////////////////////////////// |
---|
291 | //// Uniform Point curve ///////// |
---|
292 | /////////////////////////////////// |
---|
293 | /** |
---|
294 | \brief Creates a new UPointCurve |
---|
295 | */ |
---|
296 | UPointCurve::UPointCurve (void) |
---|
297 | { |
---|
298 | this->derivation = 0; |
---|
299 | this->init(); |
---|
300 | } |
---|
301 | |
---|
302 | /** |
---|
303 | \brief Creates a new UPointCurve-Derivation-Curve of deriavation'th degree |
---|
304 | */ |
---|
305 | UPointCurve::UPointCurve (int derivation) |
---|
306 | { |
---|
307 | this->derivation = derivation; |
---|
308 | dirCurve=NULL; |
---|
309 | this->init(); |
---|
310 | } |
---|
311 | |
---|
312 | /** |
---|
313 | \brief Deletes a UPointCurve. |
---|
314 | |
---|
315 | It does this by freeing all the space taken over from the nodes |
---|
316 | */ |
---|
317 | UPointCurve::~UPointCurve(void) |
---|
318 | { |
---|
319 | PathNode* tmpNode; |
---|
320 | currentNode = firstNode; |
---|
321 | while (tmpNode != 0) |
---|
322 | { |
---|
323 | tmpNode = currentNode; |
---|
324 | currentNode = currentNode->next; |
---|
325 | delete tmpNode; |
---|
326 | } |
---|
327 | if (dirCurve) |
---|
328 | delete dirCurve; |
---|
329 | } |
---|
330 | |
---|
331 | /** |
---|
332 | \brief Initializes a UPointCurve |
---|
333 | */ |
---|
334 | void UPointCurve::init(void) |
---|
335 | { |
---|
336 | nodeCount = 0; |
---|
337 | firstNode = new PathNode; |
---|
338 | currentNode = firstNode; |
---|
339 | |
---|
340 | firstNode->position = Vector (.0, .0, .0); |
---|
341 | firstNode->number = 0; |
---|
342 | firstNode->next = 0; // not sure if this really points to NULL!! |
---|
343 | |
---|
344 | return; |
---|
345 | } |
---|
346 | |
---|
347 | /** |
---|
348 | \brief Rebuilds a UPointCurve |
---|
349 | |
---|
350 | \todo very bad algorithm |
---|
351 | */ |
---|
352 | void UPointCurve::rebuild(void) |
---|
353 | { |
---|
354 | // rebuilding the Curve itself |
---|
355 | PathNode* tmpNode = this->firstNode; |
---|
356 | int i=0; |
---|
357 | Matrix xTmpMat = Matrix(this->nodeCount, this->nodeCount); |
---|
358 | Matrix yTmpMat = Matrix(this->nodeCount, this->nodeCount); |
---|
359 | Matrix zTmpMat = Matrix(this->nodeCount, this->nodeCount); |
---|
360 | Matrix xValMat = Matrix(this->nodeCount, 3); |
---|
361 | Matrix yValMat = Matrix(this->nodeCount, 3); |
---|
362 | Matrix zValMat = Matrix(this->nodeCount, 3); |
---|
363 | while(tmpNode) |
---|
364 | { |
---|
365 | Vector fac = Vector(1,1,1); |
---|
366 | for (int j = 0; j < this->nodeCount; j++) |
---|
367 | { |
---|
368 | xTmpMat(i,j) = fac.x; fac.x *= (float)i/(float)this->nodeCount;//tmpNode->position.x; |
---|
369 | yTmpMat(i,j) = fac.y; fac.y *= (float)i/(float)this->nodeCount;//tmpNode->position.y; |
---|
370 | zTmpMat(i,j) = fac.z; fac.z *= (float)i/(float)this->nodeCount;//tmpNode->position.z; |
---|
371 | } |
---|
372 | xValMat(i,0) = tmpNode->position.x; |
---|
373 | yValMat(i,0) = tmpNode->position.y; |
---|
374 | zValMat(i,0) = tmpNode->position.z; |
---|
375 | ++i; |
---|
376 | tmpNode = tmpNode->next; |
---|
377 | } |
---|
378 | tmpNode = this->firstNode; |
---|
379 | xValMat = xTmpMat.Inv() *= xValMat; |
---|
380 | yValMat = yTmpMat.Inv() *= yValMat; |
---|
381 | zValMat = zTmpMat.Inv() *= zValMat; |
---|
382 | i = 0; |
---|
383 | while(tmpNode) |
---|
384 | { |
---|
385 | tmpNode->vFactor.x = xValMat(i,0); |
---|
386 | tmpNode->vFactor.y = yValMat(i,0); |
---|
387 | tmpNode->vFactor.z = zValMat(i,0); |
---|
388 | |
---|
389 | i++; |
---|
390 | tmpNode = tmpNode->next; |
---|
391 | } |
---|
392 | } |
---|
393 | |
---|
394 | /** |
---|
395 | \brief calculates the Position on the curve |
---|
396 | \param t The position on the Curve (0<=t<=1) |
---|
397 | \return the Position on the Path |
---|
398 | */ |
---|
399 | Vector UPointCurve::calcPos(float t) |
---|
400 | { |
---|
401 | PathNode* tmpNode = firstNode; |
---|
402 | Vector ret = Vector(0.0,0.0,0.0); |
---|
403 | float factor = 1.0; |
---|
404 | while(tmpNode) |
---|
405 | { |
---|
406 | ret.x += tmpNode->vFactor.x * factor; |
---|
407 | ret.y += tmpNode->vFactor.y * factor; |
---|
408 | ret.z += tmpNode->vFactor.z * factor; |
---|
409 | factor *= t; |
---|
410 | |
---|
411 | tmpNode = tmpNode->next; |
---|
412 | } |
---|
413 | return ret; |
---|
414 | } |
---|
415 | |
---|
416 | /** |
---|
417 | \brief Calulates the direction of the Curve at time t. |
---|
418 | \param The time at which to evaluate the curve. |
---|
419 | \returns The vvaluated Vector. |
---|
420 | */ |
---|
421 | Vector UPointCurve::calcDir (float t) |
---|
422 | { |
---|
423 | PathNode* tmpNode = firstNode; |
---|
424 | Vector ret = Vector(0.0,0.0,0.0); |
---|
425 | float factor = 1.0/t; |
---|
426 | int k=0; |
---|
427 | while(tmpNode) |
---|
428 | { |
---|
429 | ret.x += tmpNode->vFactor.x * factor *k; |
---|
430 | ret.y += tmpNode->vFactor.y * factor *k; |
---|
431 | ret.z += tmpNode->vFactor.z * factor *k; |
---|
432 | factor *= t; |
---|
433 | k++; |
---|
434 | tmpNode = tmpNode->next; |
---|
435 | } |
---|
436 | ret.normalize(); |
---|
437 | return ret; |
---|
438 | } |
---|
439 | |
---|
440 | Vector UPointCurve::calcAcc (float t) |
---|
441 | { |
---|
442 | } |
---|
443 | |
---|
444 | /** |
---|
445 | \brief Calculates the Quaternion needed for our rotations |
---|
446 | \param t The time at which to evaluate the cuve. |
---|
447 | \returns The evaluated Quaternion. |
---|
448 | */ |
---|
449 | Quaternion UPointCurve::calcQuat (float t) |
---|
450 | { |
---|
451 | return Quaternion (calcDir(t), Vector(0,0,1)); |
---|
452 | } |
---|
453 | |
---|
454 | |
---|
455 | /** |
---|
456 | \brief returns the Position of the point calculated on the Curve |
---|
457 | \return a Vector to the calculated position |
---|
458 | */ |
---|
459 | Vector UPointCurve::getPos(void) const |
---|
460 | { |
---|
461 | return curvePoint; |
---|
462 | } |
---|