[3607] | 1 | /*! |
---|
| 2 | \file vector.h |
---|
| 3 | \brief A basic 3D math framework |
---|
| 4 | |
---|
| 5 | Contains classes to handle vectors, lines, rotations and planes |
---|
| 6 | */ |
---|
| 7 | |
---|
| 8 | #ifndef _QUATERNION_H |
---|
| 9 | #define _QUATERNION_H |
---|
| 10 | |
---|
| 11 | #include <math.h> |
---|
| 12 | //! PI the circle-constant |
---|
| 13 | |
---|
| 14 | //! Quaternion |
---|
| 15 | /** |
---|
| 16 | Class to handle 3-dimensional rotation efficiently |
---|
| 17 | */ |
---|
| 18 | class Quaternion |
---|
| 19 | { |
---|
| 20 | public: |
---|
| 21 | Vector v; //!< Imaginary Vector |
---|
| 22 | float w; //!< Real part of the number |
---|
| 23 | |
---|
| 24 | Quaternion (); |
---|
| 25 | Quaternion (float m[4][4]); |
---|
| 26 | Quaternion (float angle, const Vector& axis); |
---|
| 27 | Quaternion (const Vector& dir, const Vector& up); |
---|
| 28 | Quaternion (float roll, float pitch, float yaw); |
---|
| 29 | |
---|
| 30 | Quaternion operator/ (const float& f) const; |
---|
| 31 | Quaternion operator* (const float& f) const; |
---|
| 32 | Quaternion operator* (const Quaternion& q) const; |
---|
| 33 | Quaternion operator+ (const Quaternion& q) const; |
---|
| 34 | Quaternion operator- (const Quaternion& q) const; |
---|
| 35 | Quaternion conjugate () const; |
---|
| 36 | Quaternion inverse () const; |
---|
| 37 | Vector apply (Vector& f) const; |
---|
| 38 | float norm () const; |
---|
| 39 | void matrix (float m[4][4]) const; |
---|
| 40 | void quatSlerp(const Quaternion* from, const Quaternion* to, const float t, Quaternion* res); |
---|
| 41 | |
---|
| 42 | void debug(); |
---|
| 43 | private: |
---|
| 44 | float DELTA; //!< resolution of calculation |
---|
| 45 | |
---|
| 46 | }; |
---|
| 47 | |
---|
| 48 | |
---|
| 49 | /** |
---|
| 50 | \brief creates a multiplicational identity Quaternion |
---|
| 51 | */ |
---|
| 52 | Quaternion::Quaternion () |
---|
| 53 | { |
---|
| 54 | w = 1; |
---|
| 55 | v = Vector(0,0,0); |
---|
| 56 | } |
---|
| 57 | |
---|
| 58 | /** |
---|
| 59 | \brief turns a rotation along an axis into a Quaternion |
---|
| 60 | \param angle: the amount of radians to rotate |
---|
| 61 | \param axis: the axis to rotate around |
---|
| 62 | */ |
---|
| 63 | Quaternion::Quaternion (float angle, const Vector& axis) |
---|
| 64 | { |
---|
| 65 | w = cos(angle/2); |
---|
| 66 | v = axis * sin(angle/2); |
---|
| 67 | } |
---|
| 68 | |
---|
| 69 | /** |
---|
| 70 | \brief calculates a lookAt rotation |
---|
| 71 | \param dir: the direction you want to look |
---|
| 72 | \param up: specify what direction up should be |
---|
| 73 | |
---|
| 74 | Mathematically this determines the rotation a (0,0,1)-Vector has to undergo to point |
---|
| 75 | the same way as dir. If you want to use this with cameras, you'll have to reverse the |
---|
| 76 | dir Vector (Vector(0,0,0) - your viewing direction) or you'll point the wrong way. You |
---|
| 77 | can use this for meshes as well (then you do not have to reverse the vector), but keep |
---|
| 78 | in mind that if you do that, the model's front has to point in +z direction, and left |
---|
| 79 | and right should be -x or +x respectively or the mesh wont rotate correctly. |
---|
| 80 | */ |
---|
| 81 | Quaternion::Quaternion (const Vector& dir, const Vector& up) |
---|
| 82 | { |
---|
| 83 | Vector z = dir; |
---|
| 84 | z.normalize(); |
---|
| 85 | Vector x = up.cross(z); |
---|
| 86 | x.normalize(); |
---|
| 87 | Vector y = z.cross(x); |
---|
| 88 | |
---|
| 89 | float m[4][4]; |
---|
| 90 | m[0][0] = x.x; |
---|
| 91 | m[0][1] = x.y; |
---|
| 92 | m[0][2] = x.z; |
---|
| 93 | m[0][3] = 0; |
---|
| 94 | m[1][0] = y.x; |
---|
| 95 | m[1][1] = y.y; |
---|
| 96 | m[1][2] = y.z; |
---|
| 97 | m[1][3] = 0; |
---|
| 98 | m[2][0] = z.x; |
---|
| 99 | m[2][1] = z.y; |
---|
| 100 | m[2][2] = z.z; |
---|
| 101 | m[2][3] = 0; |
---|
| 102 | m[3][0] = 0; |
---|
| 103 | m[3][1] = 0; |
---|
| 104 | m[3][2] = 0; |
---|
| 105 | m[3][3] = 1; |
---|
| 106 | |
---|
| 107 | *this = Quaternion (m); |
---|
| 108 | } |
---|
| 109 | |
---|
| 110 | /** |
---|
| 111 | \brief calculates a rotation from euler angles |
---|
| 112 | \param roll: the roll in radians |
---|
| 113 | \param pitch: the pitch in radians |
---|
| 114 | \param yaw: the yaw in radians |
---|
| 115 | |
---|
| 116 | I DO HONESTLY NOT EXACTLY KNOW WHICH ANGLE REPRESENTS WHICH ROTATION. And I do not know |
---|
| 117 | in what order they are applied, I just copy-pasted the code. |
---|
| 118 | */ |
---|
| 119 | Quaternion::Quaternion (float roll, float pitch, float yaw) |
---|
| 120 | { |
---|
| 121 | float cr, cp, cy, sr, sp, sy, cpcy, spsy; |
---|
| 122 | |
---|
| 123 | // calculate trig identities |
---|
| 124 | cr = cos(roll/2); |
---|
| 125 | cp = cos(pitch/2); |
---|
| 126 | cy = cos(yaw/2); |
---|
| 127 | |
---|
| 128 | sr = sin(roll/2); |
---|
| 129 | sp = sin(pitch/2); |
---|
| 130 | sy = sin(yaw/2); |
---|
| 131 | |
---|
| 132 | cpcy = cp * cy; |
---|
| 133 | spsy = sp * sy; |
---|
| 134 | |
---|
| 135 | w = cr * cpcy + sr * spsy; |
---|
| 136 | v.x = sr * cpcy - cr * spsy; |
---|
| 137 | v.y = cr * sp * cy + sr * cp * sy; |
---|
| 138 | v.z = cr * cp * sy - sr * sp * cy; |
---|
| 139 | } |
---|
| 140 | |
---|
| 141 | /** |
---|
| 142 | \brief rotates one Quaternion by another |
---|
| 143 | \param q: another Quaternion to rotate this by |
---|
| 144 | \return a quaternion that represents the first one rotated by the second one (WARUNING: this operation is not commutative! e.g. (A*B) != (B*A)) |
---|
| 145 | */ |
---|
| 146 | Quaternion Quaternion::operator*(const Quaternion& q) const |
---|
| 147 | { |
---|
| 148 | float A, B, C, D, E, F, G, H; |
---|
| 149 | Quaternion r; |
---|
| 150 | |
---|
| 151 | A = (w + v.x)*(q.w + q.v.x); |
---|
| 152 | B = (v.z - v.y)*(q.v.y - q.v.z); |
---|
| 153 | C = (w - v.x)*(q.v.y + q.v.z); |
---|
| 154 | D = (v.y + v.z)*(q.w - q.v.x); |
---|
| 155 | E = (v.x + v.z)*(q.v.x + q.v.y); |
---|
| 156 | F = (v.x - v.z)*(q.v.x - q.v.y); |
---|
| 157 | G = (w + v.y)*(q.w - q.v.z); |
---|
| 158 | H = (w - v.y)*(q.w + q.v.z); |
---|
| 159 | |
---|
| 160 | r.w = B + (-E - F + G + H)/2; |
---|
| 161 | r.v.x = A - (E + F + G + H)/2; |
---|
| 162 | r.v.y = C + (E - F + G - H)/2; |
---|
| 163 | r.v.z = D + (E - F - G + H)/2; |
---|
| 164 | |
---|
| 165 | return r; |
---|
| 166 | } |
---|
| 167 | |
---|
| 168 | /** |
---|
| 169 | \brief add two Quaternions |
---|
| 170 | \param q: another Quaternion |
---|
| 171 | \return the sum of both Quaternions |
---|
| 172 | */ |
---|
| 173 | Quaternion Quaternion::operator+(const Quaternion& q) const |
---|
| 174 | { |
---|
| 175 | Quaternion r(*this); |
---|
| 176 | r.w = r.w + q.w; |
---|
| 177 | r.v = r.v + q.v; |
---|
| 178 | return r; |
---|
| 179 | } |
---|
| 180 | |
---|
| 181 | /** |
---|
| 182 | \brief subtract two Quaternions |
---|
| 183 | \param q: another Quaternion |
---|
| 184 | \return the difference of both Quaternions |
---|
| 185 | */ |
---|
| 186 | Quaternion Quaternion::operator- (const Quaternion& q) const |
---|
| 187 | { |
---|
| 188 | Quaternion r(*this); |
---|
| 189 | r.w = r.w - q.w; |
---|
| 190 | r.v = r.v - q.v; |
---|
| 191 | return r; |
---|
| 192 | } |
---|
| 193 | |
---|
| 194 | /** |
---|
| 195 | \brief rotate a Vector by a Quaternion |
---|
| 196 | \param v: the Vector |
---|
| 197 | \return a new Vector representing v rotated by the Quaternion |
---|
| 198 | */ |
---|
| 199 | Vector Quaternion::apply (Vector& v) const |
---|
| 200 | { |
---|
| 201 | Quaternion q; |
---|
| 202 | q.v = v; |
---|
| 203 | q.w = 0; |
---|
| 204 | q = *this * q * conjugate(); |
---|
| 205 | return q.v; |
---|
| 206 | } |
---|
| 207 | |
---|
| 208 | /** |
---|
| 209 | \brief multiply a Quaternion with a real value |
---|
| 210 | \param f: a real value |
---|
| 211 | \return a new Quaternion containing the product |
---|
| 212 | */ |
---|
| 213 | Quaternion Quaternion::operator*(const float& f) const |
---|
| 214 | { |
---|
| 215 | Quaternion r(*this); |
---|
| 216 | r.w = r.w*f; |
---|
| 217 | r.v = r.v*f; |
---|
| 218 | return r; |
---|
| 219 | } |
---|
| 220 | |
---|
| 221 | /** |
---|
| 222 | \brief divide a Quaternion by a real value |
---|
| 223 | \param f: a real value |
---|
| 224 | \return a new Quaternion containing the quotient |
---|
| 225 | */ |
---|
| 226 | Quaternion Quaternion::operator/(const float& f) const |
---|
| 227 | { |
---|
| 228 | if( f == 0) return Quaternion(); |
---|
| 229 | Quaternion r(*this); |
---|
| 230 | r.w = r.w/f; |
---|
| 231 | r.v = r.v/f; |
---|
| 232 | return r; |
---|
| 233 | } |
---|
| 234 | |
---|
| 235 | /** |
---|
| 236 | \brief calculate the conjugate value of the Quaternion |
---|
| 237 | \return the conjugate Quaternion |
---|
| 238 | */ |
---|
| 239 | Quaternion Quaternion::conjugate() const |
---|
| 240 | { |
---|
| 241 | Quaternion r(*this); |
---|
| 242 | r.v = Vector() - r.v; |
---|
| 243 | return r; |
---|
| 244 | } |
---|
| 245 | |
---|
| 246 | /** |
---|
| 247 | \brief calculate the norm of the Quaternion |
---|
| 248 | \return the norm of The Quaternion |
---|
| 249 | */ |
---|
| 250 | float Quaternion::norm() const |
---|
| 251 | { |
---|
| 252 | return w*w + v.x*v.x + v.y*v.y + v.z*v.z; |
---|
| 253 | } |
---|
| 254 | |
---|
| 255 | /** |
---|
| 256 | \brief calculate the inverse value of the Quaternion |
---|
| 257 | \return the inverse Quaternion |
---|
| 258 | |
---|
| 259 | Note that this is equal to conjugate() if the Quaternion's norm is 1 |
---|
| 260 | */ |
---|
| 261 | Quaternion Quaternion::inverse() const |
---|
| 262 | { |
---|
| 263 | float n = norm(); |
---|
| 264 | if (n != 0) |
---|
| 265 | { |
---|
| 266 | return conjugate() / norm(); |
---|
| 267 | } |
---|
| 268 | else return Quaternion(); |
---|
| 269 | } |
---|
| 270 | |
---|
| 271 | /** |
---|
| 272 | \brief convert the Quaternion to a 4x4 rotational glMatrix |
---|
| 273 | \param m: a buffer to store the Matrix in |
---|
| 274 | */ |
---|
| 275 | void Quaternion::matrix (float m[4][4]) const |
---|
| 276 | { |
---|
| 277 | float wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2; |
---|
| 278 | |
---|
| 279 | // calculate coefficients |
---|
| 280 | x2 = v.x + v.x; |
---|
| 281 | y2 = v.y + v.y; |
---|
| 282 | z2 = v.z + v.z; |
---|
| 283 | xx = v.x * x2; xy = v.x * y2; xz = v.x * z2; |
---|
| 284 | yy = v.y * y2; yz = v.y * z2; zz = v.z * z2; |
---|
| 285 | wx = w * x2; wy = w * y2; wz = w * z2; |
---|
| 286 | |
---|
| 287 | m[0][0] = 1.0 - (yy + zz); m[1][0] = xy - wz; |
---|
| 288 | m[2][0] = xz + wy; m[3][0] = 0.0; |
---|
| 289 | |
---|
| 290 | m[0][1] = xy + wz; m[1][1] = 1.0 - (xx + zz); |
---|
| 291 | m[2][1] = yz - wx; m[3][1] = 0.0; |
---|
| 292 | |
---|
| 293 | m[0][2] = xz - wy; m[1][2] = yz + wx; |
---|
| 294 | m[2][2] = 1.0 - (xx + yy); m[3][2] = 0.0; |
---|
| 295 | |
---|
| 296 | m[0][3] = 0; m[1][3] = 0; |
---|
| 297 | m[2][3] = 0; m[3][3] = 1; |
---|
| 298 | } |
---|
| 299 | |
---|
| 300 | /** |
---|
| 301 | \brief performs a smooth move. |
---|
| 302 | \param from from where |
---|
| 303 | \param to to where |
---|
| 304 | \param t the time this transformation should take |
---|
| 305 | \param res The approximation-density |
---|
| 306 | */ |
---|
| 307 | void Quaternion::quatSlerp(const Quaternion* from, const Quaternion* to, float t, Quaternion* res) |
---|
| 308 | { |
---|
| 309 | float tol[4]; |
---|
| 310 | double omega, cosom, sinom, scale0, scale1; |
---|
| 311 | DELTA = 0.2; |
---|
| 312 | |
---|
| 313 | cosom = from->v.x * to->v.x + from->v.y * to->v.y + from->v.z * to->v.z + from->w * to->w; |
---|
| 314 | |
---|
| 315 | if( cosom < 0.0 ) |
---|
| 316 | { |
---|
| 317 | cosom = -cosom; |
---|
| 318 | tol[0] = -to->v.x; |
---|
| 319 | tol[1] = -to->v.y; |
---|
| 320 | tol[2] = -to->v.z; |
---|
| 321 | tol[3] = -to->w; |
---|
| 322 | } |
---|
| 323 | else |
---|
| 324 | { |
---|
| 325 | tol[0] = to->v.x; |
---|
| 326 | tol[1] = to->v.y; |
---|
| 327 | tol[2] = to->v.z; |
---|
| 328 | tol[3] = to->w; |
---|
| 329 | } |
---|
| 330 | |
---|
| 331 | //if( (1.0 - cosom) > DELTA ) |
---|
| 332 | //{ |
---|
| 333 | omega = acos(cosom); |
---|
| 334 | sinom = sin(omega); |
---|
| 335 | scale0 = sin((1.0 - t) * omega) / sinom; |
---|
| 336 | scale1 = sin(t * omega) / sinom; |
---|
| 337 | //} |
---|
| 338 | /* |
---|
| 339 | else |
---|
| 340 | { |
---|
| 341 | scale0 = 1.0 - t; |
---|
| 342 | scale1 = t; |
---|
| 343 | } |
---|
| 344 | */ |
---|
| 345 | res->v.x = scale0 * from->v.x + scale1 * tol[0]; |
---|
| 346 | res->v.y = scale0 * from->v.y + scale1 * tol[1]; |
---|
| 347 | res->v.z = scale0 * from->v.z + scale1 * tol[2]; |
---|
| 348 | res->w = scale0 * from->w + scale1 * tol[3]; |
---|
| 349 | } |
---|
| 350 | |
---|
| 351 | |
---|
| 352 | /** |
---|
| 353 | \brief convert a rotational 4x4 glMatrix into a Quaternion |
---|
| 354 | \param m: a 4x4 matrix in glMatrix order |
---|
| 355 | */ |
---|
| 356 | Quaternion::Quaternion (float m[4][4]) |
---|
| 357 | { |
---|
| 358 | |
---|
| 359 | float tr, s, q[4]; |
---|
| 360 | int i, j, k; |
---|
| 361 | |
---|
| 362 | int nxt[3] = {1, 2, 0}; |
---|
| 363 | |
---|
| 364 | tr = m[0][0] + m[1][1] + m[2][2]; |
---|
| 365 | |
---|
| 366 | // check the diagonal |
---|
| 367 | if (tr > 0.0) |
---|
| 368 | { |
---|
| 369 | s = sqrt (tr + 1.0); |
---|
| 370 | w = s / 2.0; |
---|
| 371 | s = 0.5 / s; |
---|
| 372 | v.x = (m[1][2] - m[2][1]) * s; |
---|
| 373 | v.y = (m[2][0] - m[0][2]) * s; |
---|
| 374 | v.z = (m[0][1] - m[1][0]) * s; |
---|
| 375 | } |
---|
| 376 | else |
---|
| 377 | { |
---|
| 378 | // diagonal is negative |
---|
| 379 | i = 0; |
---|
| 380 | if (m[1][1] > m[0][0]) i = 1; |
---|
| 381 | if (m[2][2] > m[i][i]) i = 2; |
---|
| 382 | j = nxt[i]; |
---|
| 383 | k = nxt[j]; |
---|
| 384 | |
---|
| 385 | s = sqrt ((m[i][i] - (m[j][j] + m[k][k])) + 1.0); |
---|
| 386 | |
---|
| 387 | q[i] = s * 0.5; |
---|
| 388 | |
---|
| 389 | if (s != 0.0) s = 0.5 / s; |
---|
| 390 | |
---|
| 391 | q[3] = (m[j][k] - m[k][j]) * s; |
---|
| 392 | q[j] = (m[i][j] + m[j][i]) * s; |
---|
| 393 | q[k] = (m[i][k] + m[k][i]) * s; |
---|
| 394 | |
---|
| 395 | v.x = q[0]; |
---|
| 396 | v.y = q[1]; |
---|
| 397 | v.z = q[2]; |
---|
| 398 | w = q[3]; |
---|
| 399 | } |
---|
| 400 | } |
---|
| 401 | |
---|
| 402 | /** |
---|
| 403 | \brief outputs some nice formated debug information about this quaternion |
---|
| 404 | */ |
---|
| 405 | void Quaternion::debug(void) |
---|
| 406 | { |
---|
| 407 | PRINT(0)("Quaternion Debug Information\n"); |
---|
| 408 | PRINT(0)("real a=%f; imag: x=%f y=%f z=%f\n", w, v.x, v.y, v.z); |
---|
| 409 | } |
---|
| 410 | |
---|
| 411 | |
---|
| 412 | |
---|
| 413 | #endif /* _QUATERNION_H */ |
---|