Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/orxonox/trunk/src/lib/math/vector.h @ 4773

Last change on this file since 4773 was 4611, checked in by patrick, 19 years ago

orxonox/trunk: definition of the separation plane and partition of the vertex. some vector sVec3D modification

File size: 10.6 KB
Line 
1/*!
2    \file vector.h
3    \brief A basic 3D math framework
4
5    Contains classes to handle vectors, lines, rotations and planes
6*/
7
8#ifndef _VECTOR_H
9#define _VECTOR_H
10
11#include <math.h>
12#include "compiler.h"
13#include "abstract_model.h"
14//! PI the circle-constant
15#define PI 3.14159265359f
16
17//! 3D Vector
18/**
19        Class to handle 3D Vectors
20*/
21class Vector {
22
23
24 public:
25  Vector (float x, float y, float z) : x(x), y(y), z(z) {}  //!< assignment constructor
26  Vector () : x(0), y(0), z(0) {}
27  ~Vector () {}
28
29  /** \param index The index of the "array" \returns the x/y/z coordinate */
30  inline float operator[] (float index) const {if( index == 0) return this->x; if( index == 1) return this->y; if( index == 2) return this->z; }
31  /**  \param v The vector to add \returns the addition between two vectors (this + v) */
32  inline Vector operator+ (const Vector& v) const { return Vector(x + v.x, y + v.y, z + v.z); };
33  /**  \param v The vector to add \returns the addition between two vectors (this + v) */
34  inline Vector operator+ (const sVec3D& v) const { return Vector(x + v[0], y + v[1], z + v[2]); };
35  /** \param v The vector to add  \returns the addition between two vectors (this += v) */
36  inline const Vector& operator+= (const Vector& v) { this->x += v.x; this->y += v.y; this->z += v.z; return *this; };
37  /** \param v The vector to substract  \returns the substraction between two vectors (this - v) */
38  inline const Vector& operator+= (const sVec3D& v) { this->x += v[0]; this->y += v[1]; this->z += v[2]; return *this; };
39  /** \param v The vector to substract  \returns the substraction between two vectors (this - v) */
40  inline Vector operator- (const Vector& v) const { return Vector(x - v.x, y - v.y, z - v.z); }
41  /** \param v The vector to substract  \returns the substraction between two vectors (this - v) */
42  inline Vector operator- (const sVec3D& v) const { return Vector(x - v[0], y - v[1], z - v[2]); }
43  /** \param v The vector to substract  \returns the substraction between two vectors (this -= v) */
44  inline const Vector& operator-= (const Vector& v) { this->x -= v.x; this->y -= v.y; this->z -= v.z; return *this; };
45  /** \param v The vector to substract  \returns the substraction between two vectors (this -= v) */
46  inline const Vector& operator-= (const sVec3D& v) { this->x -= v[0]; this->y -= v[1]; this->z -= v[2]; return *this; };
47  /** \param v the second vector  \returns The dotProduct between two vector (this (dot) v) */
48  inline float operator* (const Vector& v) const { return x * v.x + y * v.y + z * v.z; };
49  /** \todo strange */
50  inline const Vector& operator*= (const Vector& v) { this->x *= v.x; this->y *= v.y; this->z *= v.z; return *this; };
51  /** \param f a factor to multiply the vector with \returns the vector multiplied by f (this * f) */
52  inline Vector operator* (float f) const { return Vector(x * f, y * f, z * f); };
53  /** \param f a factor to multiply the vector with \returns the vector multiplied by f (this *= f) */
54  inline const Vector& operator*= (float f) { this->x *= f; this->y *= f; this->z *= f; return *this; };
55  /** \param f a factor to divide the vector with \returns the vector divided by f (this / f) */
56  inline Vector operator/ (float f) const {if (unlikely(f == 0.0)) return Vector(0,0,0); else return Vector(this->x / f, this->y / f, this->z / f); };
57  /** \param f a factor to divide the vector with \returns the vector divided by f (this /= f) */
58  inline const Vector& operator/= (float f) {if (unlikely(f == 0.0)) {this->x=0;this->y=0;this->z=0;} else {this->x /= f; this->y /= f; this->z /= f;} return *this; };
59  /** \brief copy constructor \todo (i do not know it this is faster) \param v the vector to assign to this vector. \returns the vector v */
60  inline const Vector& operator= (const Vector& v) { this->x = v.x; this->y = v.y; this->z = v.z; return *this; };
61  /** \brief copy constructor  \param v the sVec3D to assign to this vector. \returns the vector v */
62  inline const Vector& operator= (const sVec3D& v) { this->x = v[0]; this->y = v[1]; this->z = v[2]; }
63  /** \param v: the other vector \return the dot product of the vectors */
64  float dot (const Vector& v) const { return x*v.x+y*v.y+z*v.z; };
65  /** \param v: the corss-product partner \returns the cross-product between this and v (this (x) v) */
66  inline Vector cross (const Vector& v) const { return Vector(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x ); }
67  /** \brief scales the this vector with v  \param v the vector to scale this with */
68  void scale(const Vector& v) {   x *= v.x;  y *= v.y; z *= v.z; };
69  /** \returns the length of the vector */
70  inline float len() const { return sqrt (x*x+y*y+z*z); }
71  /** \brief normalizes the vector */
72  inline void normalize() {
73                      float l = len();
74                      if( unlikely(l == 0.0))
75                        {
76                          // Prevent divide by zero
77                          return;
78                        }
79                      x = x / l;
80                      y = y / l;
81                      z = z / l;
82                    }
83  Vector getNormalized() const;
84  Vector abs();
85
86  void debug() const;
87
88 public:
89  float    x;     //!< The x Coordinate of the Vector.
90  float    y;     //!< The y Coordinate of the Vector.
91  float    z;     //!< The z Coordinate of the Vector.
92};
93
94/**
95   \brief calculate the angle between two vectors in radiances
96   \param v1: a vector
97   \param v2: another vector
98   \return the angle between the vectors in radians
99*/
100inline float angleDeg (const Vector& v1, const Vector& v2) { return acos( v1 * v2 / (v1.len() * v2.len())); };
101/**
102   \brief calculate the angle between two vectors in degrees
103   \param v1: a vector
104   \param v2: another vector
105   \return the angle between the vectors in degrees
106*/
107inline float angleRad (const Vector& v1, const Vector& v2) { return acos( v1 * v2 / (v1.len() * v2.len())) * 180/M_PI; };
108
109
110//! Quaternion
111/**
112   Class to handle 3-dimensional rotation efficiently
113*/
114class Quaternion
115{
116 public:
117  /** \brief creates a Default quaternion (multiplicational identity Quaternion)*/
118  inline Quaternion () { w = 1; v = Vector(0,0,0); }
119  /** \brief creates a Quaternion looking into the direction v \param v: the direction \param f: the value */
120  inline Quaternion (const Vector& v, float f) { this->w = f; this->v = v; }
121  Quaternion (float m[4][4]);
122  /** \brief turns a rotation along an axis into a Quaternion \param angle: the amount of radians to rotate \param axis: the axis to rotate around */
123  inline Quaternion (float angle, const Vector& axis) { w = cos(angle/2); v = axis * sin(angle/2); }
124  Quaternion (const Vector& dir, const Vector& up);
125  Quaternion (float roll, float pitch, float yaw);
126  Quaternion operator/ (const float& f) const;
127  /** \param f: the value to divide by \returns the quaternion devided by f (this /= f) */
128  inline const Quaternion& operator/= (const float& f) {*this = *this / f; return *this;}
129  Quaternion operator* (const float& f) const;
130  /** \param f: the value to multiply by \returns the quaternion multiplied by f (this *= f) */
131  inline const Quaternion& operator*= (const float& f) {*this = *this * f; return *this;}
132  Quaternion operator* (const Quaternion& q) const;
133  /** \param q: the Quaternion to multiply by \returns the quaternion multiplied by q (this *= q) */
134  inline const Quaternion operator*= (const Quaternion& q) {*this = *this * q; return *this; };
135  /** \param q the Quaternion to add to this \returns the quaternion added with q (this + q) */
136  inline Quaternion operator+ (const Quaternion& q) const { return Quaternion(q.v + v, q.w + w); };
137  /** \param q the Quaternion to add to this \returns the quaternion added with q (this += q) */
138  inline const Quaternion& operator+= (const Quaternion& q) { this->v += q.v; this->w += q.w; return *this; };
139  /** \param q the Quaternion to substrace from this \returns the quaternion substracted by q (this - q) */
140  inline Quaternion operator- (const Quaternion& q) const { return Quaternion(q.v - v, q.w - w); }
141  /** \param q the Quaternion to substrace from this \returns the quaternion substracted by q (this -= q) */
142  inline const Quaternion& operator-= (const Quaternion& q) { this->v -= q.v; this->w -= q.w; return *this; };
143  /** \brief copy constructor \param q: the Quaternion to set this to. \returns the Quaternion q (or this) */
144  inline Quaternion operator= (const Quaternion& q) {this->v = q.v; this->w = q.w; return *this;}
145  /** \brief conjugates this Quaternion \returns the conjugate */
146  inline Quaternion conjugate () const {  Quaternion r(*this);  r.v = Vector() - r.v;  return r;}
147  Quaternion inverse () const;
148  Vector apply (const Vector& f) const;
149  float norm () const;
150  void matrix (float m[4][4]) const;
151
152  void debug();
153
154 public:
155  Vector    v;        //!< Imaginary Vector
156  float     w;        //!< Real part of the number
157
158};
159
160Quaternion quatSlerp(const Quaternion& from, const Quaternion& to, float t);
161
162
163
164//! 3D rotation (OBSOLETE)
165/**
166  Class to handle 3-dimensional rotations.
167  Can create a rotation from several inputs, currently stores rotation using a 3x3 Matrix
168*/
169class Rotation {
170  public:
171
172  float m[9]; //!< 3x3 Rotation Matrix
173
174  Rotation ( const Vector& v);
175  Rotation ( const Vector& axis, float angle);
176  Rotation ( float pitch, float yaw, float roll);
177  Rotation ();
178  ~Rotation () {}
179
180  Rotation operator* (const Rotation& r);
181
182  void glmatrix (float* buffer);
183};
184
185//!< Apply a rotation to a vector
186Vector rotateVector( const Vector& v, const Rotation& r);
187
188//! 3D line
189/**
190  Class to store Lines in 3-dimensional space
191
192  Supports line-to-line distance measurements and rotation
193*/
194class Line
195{
196  public:
197
198  Vector r;   //!< Offset
199  Vector a;   //!< Direction
200
201  Line ( Vector r, Vector a) : r(r), a(a) {}  //!< assignment constructor
202  Line () : r(Vector(0,0,0)), a(Vector (1,1,1)) {}
203  ~Line () {}
204
205  float distance (const Line& l) const;
206  float distancePoint (const Vector& v) const;
207  float distancePoint (const sVec3D& v) const;
208  Vector* footpoints (const Line& l) const;
209  float len () const;
210
211  void rotate(const Rotation& rot);
212};
213
214//! 3D plane
215/**
216  Class to handle planes in 3-dimensional space
217
218  Critical for polygon-based collision detection
219*/
220class Plane
221{
222  public:
223
224  Vector n;   //!< Normal vector
225  float k;    //!< Offset constant
226
227  Plane (Vector a, Vector b, Vector c);
228  Plane (Vector norm, Vector p);
229  Plane (Vector norm, sVec3D p);
230  Plane (Vector n, float k) : n(n), k(k) {} //!< assignment constructor
231  Plane () : n(Vector(1,1,1)), k(0) {}
232  ~Plane () {}
233
234  Vector intersectLine (const Line& l) const;
235  float distancePoint (const Vector& p) const;
236  float distancePoint (const sVec3D& p) const;
237  float locatePoint (const Vector& p) const;
238};
239
240#endif /* _VECTOR_H */
Note: See TracBrowser for help on using the repository browser.