Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/orxonox/trunk/src/lib/math/vector.h @ 5037

Last change on this file since 5037 was 5008, checked in by bensch, 19 years ago

orxonox/trunk: better coloring

File size: 14.7 KB
Line 
1/*!
2 * @file vector.h
3 * A basic 3D math framework
4 *
5 * Contains classes to handle vectors, lines, rotations and planes
6*/
7
8#ifndef _VECTOR_H
9#define _VECTOR_H
10
11#include <math.h>
12#include "compiler.h"
13#include "abstract_model.h"
14//! PI the circle-constant
15#define PI 3.14159265359f
16
17//! 3D Vector
18/**
19        Class to handle 3D Vectors
20*/
21class Vector {
22
23
24 public:
25  Vector (float x, float y, float z) : x(x), y(y), z(z) {}  //!< assignment constructor
26  Vector () : x(0), y(0), z(0) {}
27  ~Vector () {}
28
29  /** @param index The index of the "array" @returns the x/y/z coordinate */
30  inline float operator[] (float index) const {if( index == 0) return this->x; if( index == 1) return this->y; if( index == 2) return this->z; }
31  /** @param v The vector to add @returns the addition between two vectors (this + v) */
32  inline Vector operator+ (const Vector& v) const { return Vector(x + v.x, y + v.y, z + v.z); };
33  /** @param v The vector to add @returns the addition between two vectors (this + v) */
34  inline Vector operator+ (const sVec3D& v) const { return Vector(x + v[0], y + v[1], z + v[2]); };
35  /** @param v The vector to add  @returns the addition between two vectors (this += v) */
36  inline const Vector& operator+= (const Vector& v) { this->x += v.x; this->y += v.y; this->z += v.z; return *this; };
37  /** @param v The vector to substract  @returns the substraction between two vectors (this - v) */
38  inline const Vector& operator+= (const sVec3D& v) { this->x += v[0]; this->y += v[1]; this->z += v[2]; return *this; };
39  /** @param v The vector to substract  @returns the substraction between two vectors (this - v) */
40  inline Vector operator- (const Vector& v) const { return Vector(x - v.x, y - v.y, z - v.z); }
41  /** @param v The vector to substract  @returns the substraction between two vectors (this - v) */
42  inline Vector operator- (const sVec3D& v) const { return Vector(x - v[0], y - v[1], z - v[2]); }
43  /** @param v The vector to substract  @returns the substraction between two vectors (this -= v) */
44  inline const Vector& operator-= (const Vector& v) { this->x -= v.x; this->y -= v.y; this->z -= v.z; return *this; };
45  /** @param v The vector to substract  @returns the substraction between two vectors (this -= v) */
46  inline const Vector& operator-= (const sVec3D& v) { this->x -= v[0]; this->y -= v[1]; this->z -= v[2]; return *this; };
47  /** @param v the second vector  @returns The dotProduct between two vector (this (dot) v) */
48  inline float operator* (const Vector& v) const { return x * v.x + y * v.y + z * v.z; };
49  /** @todo strange */
50  inline const Vector& operator*= (const Vector& v) { this->x *= v.x; this->y *= v.y; this->z *= v.z; return *this; };
51  /** @param f a factor to multiply the vector with @returns the vector multiplied by f (this * f) */
52  inline Vector operator* (float f) const { return Vector(x * f, y * f, z * f); };
53  /** @param f a factor to multiply the vector with @returns the vector multiplied by f (this *= f) */
54  inline const Vector& operator*= (float f) { this->x *= f; this->y *= f; this->z *= f; return *this; };
55  /** @param f a factor to divide the vector with @returns the vector divided by f (this / f) */
56  inline Vector operator/ (float f) const { return (unlikely(f == 0.0))?Vector(0,0,0):Vector(this->x / f, this->y / f, this->z / f); };
57  /** @param f a factor to divide the vector with @returns the vector divided by f (this /= f) */
58  inline const Vector& operator/= (float f) {if (unlikely(f == 0.0)) {this->x=0;this->y=0;this->z=0;} else {this->x /= f; this->y /= f; this->z /= f;} return *this; };
59  /**  copy constructor @todo (i do not know it this is faster) @param v the vector to assign to this vector. @returns the vector v */
60  inline const Vector& operator= (const Vector& v) { this->x = v.x; this->y = v.y; this->z = v.z; return *this; };
61  /** copy constructor* @param v the sVec3D to assign to this vector. @returns the vector v */
62  inline const Vector& operator= (const sVec3D& v) { this->x = v[0]; this->y = v[1]; this->z = v[2]; }
63  /** @param v: the other vector \return the dot product of the vectors */
64  float dot (const Vector& v) const { return x*v.x+y*v.y+z*v.z; };
65  /** @param v: the corss-product partner @returns the cross-product between this and v (this (x) v) */
66  inline Vector cross (const Vector& v) const { return Vector(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x ); }
67  /** scales the this vector with v* @param v the vector to scale this with */
68  void scale(const Vector& v) {   x *= v.x;  y *= v.y; z *= v.z; };
69  /** @returns the length of the vector */
70  inline float len() const { return sqrt (x*x+y*y+z*z); }
71  /** normalizes the vector */
72  inline void normalize() {
73                      float l = len();
74                      if( unlikely(l == 0.0))
75                        {
76                          // Prevent divide by zero
77                          return;
78                        }
79                      x = x / l;
80                      y = y / l;
81                      z = z / l;
82                    }
83  Vector getNormalized() const;
84  Vector abs();
85
86  void debug() const;
87
88 public:
89  float    x;     //!< The x Coordinate of the Vector.
90  float    y;     //!< The y Coordinate of the Vector.
91  float    z;     //!< The z Coordinate of the Vector.
92};
93
94/**
95 *  calculate the angle between two vectors in radiances
96 * @param v1: a vector
97 * @param v2: another vector
98 * @return the angle between the vectors in radians
99*/
100inline float angleDeg (const Vector& v1, const Vector& v2) { return acos( v1 * v2 / (v1.len() * v2.len())); };
101/**
102 *  calculate the angle between two vectors in degrees
103 * @param v1: a vector
104 * @param v2: another vector
105 * @return the angle between the vectors in degrees
106*/
107inline float angleRad (const Vector& v1, const Vector& v2) { return acos( v1 * v2 / (v1.len() * v2.len())) * 180/M_PI; };
108
109/** an easy way to create a Random Vector @param sideLength the length of the Vector (x not sqrt(x^2...)) */
110#define VECTOR_RAND(sideLength)  (Vector((float)rand()/RAND_MAX -.5, (float)rand()/RAND_MAX -.5, (float)rand()/RAND_MAX -.5) * sideLength)
111
112
113//! Quaternion
114/**
115   Class to handle 3-dimensional rotation efficiently
116*/
117class Quaternion
118{
119 public:
120  /** creates a Default quaternion (multiplicational identity Quaternion)*/
121  inline Quaternion () { w = 1; v = Vector(0,0,0); }
122  /** creates a Quaternion looking into the direction v @param v: the direction @param f: the value */
123  inline Quaternion (const Vector& v, float f) { this->w = f; this->v = v; }
124  Quaternion (float m[4][4]);
125  /** turns a rotation along an axis into a Quaternion @param angle: the amount of radians to rotate @param axis: the axis to rotate around */
126  inline Quaternion (float angle, const Vector& axis) { w = cos(angle/2); v = axis * sin(angle/2); }
127  Quaternion (const Vector& dir, const Vector& up);
128  Quaternion (float roll, float pitch, float yaw);
129  /** @param f: a real value @return a Quaternion containing the quotient */
130  inline Quaternion operator/ (const float& f) const { return (unlikely(f==0.0)) ? Quaternion() : Quaternion(this->v/f, this->w/f); };
131  /** @param f: the value to divide by @returns the quaternion devided by f (this /= f) */
132  inline const Quaternion& operator/= (const float& f) {*this = *this / f; return *this;}
133  /** @param f: a real value @return a Quaternion containing the product */
134  inline Quaternion operator* (const float& f) const { return Quaternion(this->v*f, this->w*f); };
135  /** @param f: the value to multiply by @returns the quaternion multiplied by f (this *= f) */
136  inline const Quaternion& operator*= (const float& f) {*this = *this * f; return *this;}
137  /** @param q: another Quaternion to rotate this by @return a quaternion that represents the first one rotated by the second one (WARUNING: this operation is not commutative! e.g. (A*B) != (B*A)) */
138  Quaternion operator* (const Quaternion& q) const { return Quaternion(Vector(this->w*q.v.x + this->v.x*q.w + this->v.y*q.v.z - this->v.z*q.v.y,
139                                                                         this->w*q.v.y + this->v.y*q.w + this->v.z*q.v.x - this->v.x*q.v.z,
140                                                                         this->w*q.v.z + this->v.z*q.w + this->v.x*q.v.y - this->v.y*q.v.x),
141                                                                         this->w*q.w - this->v.x*q.v.x - this->v.y*q.v.y - this->v.z*q.v.z); };
142  /** @param q: the Quaternion to multiply by @returns the quaternion multiplied by q (this *= q) */
143  inline const Quaternion& operator*= (const Quaternion& q) {*this = *this * q; return *this; };
144  /** @param q the Quaternion by which to devide @returns the division from this by q (this / q) */
145  inline Quaternion operator/ (const Quaternion& q) const { return *this * q.inverse(); };
146  /** @param q the Quaternion by which to devide @returns the division from this by q (this /= q) */
147  inline const Quaternion& operator/= (const Quaternion& q) { *this = *this * q.inverse(); return *this; };
148  /** @param q the Quaternion to add to this @returns the quaternion added with q (this + q) */
149  inline Quaternion operator+ (const Quaternion& q) const { return Quaternion(q.v + v, q.w + w); };
150  /** @param q the Quaternion to add to this @returns the quaternion added with q (this += q) */
151  inline const Quaternion& operator+= (const Quaternion& q) { this->v += q.v; this->w += q.w; return *this; };
152  /** @param q the Quaternion to substrace from this @returns the quaternion substracted by q (this - q) */
153  inline Quaternion operator- (const Quaternion& q) const { return Quaternion(q.v - v, q.w - w); }
154  /** @param q the Quaternion to substrace from this @returns the quaternion substracted by q (this -= q) */
155  inline const Quaternion& operator-= (const Quaternion& q) { this->v -= q.v; this->w -= q.w; return *this; };
156  /** copy constructor @param q: the Quaternion to set this to. @returns the Quaternion q (or this) */
157  inline Quaternion operator= (const Quaternion& q) {this->v = q.v; this->w = q.w; return *this;}
158  /** conjugates this Quaternion @returns the conjugate */
159  inline Quaternion conjugate () const { return Quaternion(Vector(-v.x, -v.y, -v.z), this->w); };
160  /** @returns the norm of The Quaternion */
161  inline float norm () const { return sqrt(w*w + v.x*v.x + v.y*v.y + v.z*v.z); };
162  /** @returns the inverted Quaterntion of this */
163  inline Quaternion inverse () const { return conjugate() / (w*w + v.x*v.x + v.y*v.y + v.z*v.z); };
164  /** @param v: the Vector  @return a new Vector representing v rotated by the Quaternion */
165  inline Vector apply (const Vector& v) const { return (*this * Quaternion(v, 0) * conjugate()).v; };
166  void matrix (float m[4][4]) const;
167  /** @returns the normalized Quaternion (|this|) */
168  inline Quaternion getNormalized() const { float n = this->norm(); return Quaternion(this->v/n, this->w/n); };
169  /** normalizes the current Quaternion */
170  inline void normalize() { float n = this->norm(); this->v /= n; this->w/=n; };
171
172  /** @returns the rotational axis of this Quaternion */
173  inline Vector getSpacialAxis() const { return this->v / sin(acos(w));/*sqrt(v.x*v.x + v.y*v.y + v.z+v.z);*/ };
174  /** @returns the rotational angle of this Quaternion around getSpacialAxis()  !! IN DEGREE !! */
175  inline float getSpacialAxisAngle() const { return 360.0 / M_PI * acos(this->w); };
176
177  static Quaternion quatSlerp(const Quaternion& from, const Quaternion& to, float t);
178
179  void debug();
180  void debug2();
181
182
183 public:
184  Vector    v;        //!< Imaginary Vector
185  float     w;        //!< Real part of the number
186
187};
188
189
190
191
192//! 3D rotation (OBSOLETE)
193/**
194  Class to handle 3-dimensional rotations.
195  Can create a rotation from several inputs, currently stores rotation using a 3x3 Matrix
196*/
197class Rotation {
198  public:
199
200  float m[9]; //!< 3x3 Rotation Matrix
201
202  Rotation ( const Vector& v);
203  Rotation ( const Vector& axis, float angle);
204  Rotation ( float pitch, float yaw, float roll);
205  Rotation ();
206  ~Rotation () {}
207
208  Rotation operator* (const Rotation& r);
209
210  void glmatrix (float* buffer);
211};
212
213//!< Apply a rotation to a vector
214Vector rotateVector( const Vector& v, const Rotation& r);
215
216//! 3D line
217/**
218  Class to store Lines in 3-dimensional space
219
220  Supports line-to-line distance measurements and rotation
221*/
222class Line
223{
224  public:
225
226  Vector r;   //!< Offset
227  Vector a;   //!< Direction
228
229  Line ( Vector r, Vector a) : r(r), a(a) {}  //!< assignment constructor
230  Line () : r(Vector(0,0,0)), a(Vector (1,1,1)) {}
231  ~Line () {}
232
233  float distance (const Line& l) const;
234  float distancePoint (const Vector& v) const;
235  float distancePoint (const sVec3D& v) const;
236  Vector* footpoints (const Line& l) const;
237  float len () const;
238
239  void rotate(const Rotation& rot);
240};
241
242//! 3D plane
243/**
244  Class to handle planes in 3-dimensional space
245
246  Critical for polygon-based collision detection
247*/
248class Plane
249{
250  public:
251
252  Vector n;   //!< Normal vector
253  float k;    //!< Offset constant
254
255  Plane (Vector a, Vector b, Vector c);
256  Plane (Vector norm, Vector p);
257  Plane (Vector norm, sVec3D p);
258  Plane (Vector n, float k) : n(n), k(k) {} //!< assignment constructor
259  Plane () : n(Vector(1,1,1)), k(0) {}
260  ~Plane () {}
261
262  Vector intersectLine (const Line& l) const;
263  float distancePoint (const Vector& p) const;
264  float distancePoint (const sVec3D& p) const;
265  float locatePoint (const Vector& p) const;
266};
267
268
269
270//! A class that represents a rectangle, this is needed for SpatialSeparation
271class Rectangle
272{
273
274  public:
275    Rectangle() { this->center = new Vector(); }
276    Rectangle(const Vector &center, float len) { this->center = new Vector(center.x, center.y, center.z); this->axis[0] = len; this->axis[1] = len; }
277    virtual ~Rectangle() {}
278
279    /** \brief sets the center of the rectangle to a defined vector @param center the new center */
280   inline void setCenter(const Vector &center) { *this->center = center;}
281    /** \brief sets the center of the rectangle to a defined vector @param x coord of the center @param y coord of the center @param z coord of the center */
282   inline void setCenter(float x, float y, float z) { this->center->x = x; this->center->y = y; this->center->z = z; }
283   /** \brief returns the center of the rectangle to a defined vector @returns center the new center */
284   inline const Vector* getCenter() const { return this->center; }
285
286   /** \brief sets both axis of the rectangle to a defined vector @param unityLength the new center */
287   inline void setAxis(float unityLength) { this->axis[0] = unityLength; this->axis[1] = unityLength; }
288   /** \brief sets both axis of the rectangle to a defined vector @param v1 the length of the x axis @param v2 the length of the z axis*/
289   inline void setAxis(float v1, float v2) { this->axis[0] = v1; this->axis[1] = v2; }
290   /** \brief gets one axis length of the rectangle  @returns the length of the axis 0 */
291   inline float getAxis() { return this-> axis[0]; }
292
293  private:
294    Vector*         center;
295    float           axis[2];
296};
297
298
299#endif /* _VECTOR_H */
300
Note: See TracBrowser for help on using the repository browser.