[4565] | 1 | /******************************************************* |
---|
| 2 | A simple program that demonstrates NewMat10 library. |
---|
| 3 | The program defines a random symmetric matrix |
---|
| 4 | and computes its eigendecomposition. |
---|
| 5 | For further details read the NewMat10 Reference Manual |
---|
| 6 | ********************************************************/ |
---|
| 7 | |
---|
| 8 | |
---|
| 9 | #define WANT_STREAM |
---|
| 10 | #define WANT_MATH |
---|
| 11 | #define WANT_FSTREAM |
---|
| 12 | |
---|
| 13 | |
---|
| 14 | |
---|
| 15 | #include <stdlib.h> |
---|
| 16 | #include <time.h> |
---|
| 17 | #include <string.h> |
---|
| 18 | |
---|
| 19 | // the following two are needed for printing |
---|
| 20 | #include <iostream.h> |
---|
| 21 | #include <iomanip.h> |
---|
| 22 | /************************************** |
---|
| 23 | The NewMat10 include files */ |
---|
| 24 | #include "include.h" |
---|
| 25 | #include "newmat.h" |
---|
| 26 | #include "newmatap.h" |
---|
| 27 | #include "newmatio.h" |
---|
| 28 | /***************************************/ |
---|
| 29 | |
---|
| 30 | |
---|
| 31 | #ifdef use_namespace |
---|
| 32 | using namespace RBD_LIBRARIES; |
---|
| 33 | #endif |
---|
| 34 | |
---|
| 35 | int main(int argc, char **argv) { |
---|
| 36 | |
---|
[4567] | 37 | |
---|
[4566] | 38 | SymmetricMatrix C(3); |
---|
| 39 | |
---|
| 40 | C(1,1) = 1; |
---|
| 41 | C(1,2) = 4; |
---|
| 42 | C(1,3) = 4; |
---|
| 43 | C(2,1) = 4; |
---|
| 44 | C(2,2) = 2; |
---|
| 45 | C(2,3) = 4; |
---|
| 46 | C(3,1) = 4; |
---|
| 47 | C(3,2) = 4; |
---|
| 48 | C(3,3) = 3; |
---|
| 49 | |
---|
| 50 | cout << "The symmetrix matrix C" << endl; |
---|
| 51 | cout << setw(5) << setprecision(0) << C << endl; |
---|
| 52 | |
---|
[4567] | 53 | Matrix V(3,3); // for eigenvectors |
---|
[4566] | 54 | DiagonalMatrix D(3); // for eigenvalues |
---|
| 55 | |
---|
| 56 | // the decomposition |
---|
| 57 | Jacobi(C, D, V); |
---|
| 58 | |
---|
| 59 | |
---|
| 60 | // Print the result |
---|
| 61 | cout << "The eigenvalues matrix:" << endl; |
---|
| 62 | cout << setw(10) << setprecision(5) << D << endl; |
---|
| 63 | cout << "The eigenvectors matrix:" << endl; |
---|
| 64 | cout << setw(10) << setprecision(5) << V << endl; |
---|
| 65 | |
---|
| 66 | return 0; |
---|
| 67 | /* |
---|
[4565] | 68 | int M = 3, N = 5; |
---|
| 69 | Matrix X(M,N); // Define an M x N general matrix |
---|
| 70 | |
---|
| 71 | // Fill X by random numbers between 0 and 9 |
---|
| 72 | // Note that indexing into matrices in NewMat is 1-based! |
---|
| 73 | srand(time(NULL)); |
---|
| 74 | for (int i = 1; i <= M; ++i) { |
---|
| 75 | for (int j = 1; j <= N; ++j) { |
---|
| 76 | X(i,j) = rand() % 10; |
---|
| 77 | } |
---|
| 78 | } |
---|
| 79 | |
---|
| 80 | SymmetricMatrix C; |
---|
| 81 | C << X * X.t(); // fill in C by X * X^t. |
---|
| 82 | // Works because we *know* that the result is symmetric |
---|
| 83 | |
---|
| 84 | cout << "The symmetrix matrix C" << endl; |
---|
| 85 | cout << setw(5) << setprecision(0) << C << endl; |
---|
| 86 | |
---|
| 87 | |
---|
| 88 | // compute eigendecomposition of C |
---|
| 89 | Matrix V(3,3); // for eigenvectors |
---|
| 90 | DiagonalMatrix D(3); // for eigenvalues |
---|
| 91 | |
---|
| 92 | // the decomposition |
---|
| 93 | Jacobi(C, D, V); |
---|
| 94 | |
---|
| 95 | // Print the result |
---|
| 96 | cout << "The eigenvalues matrix:" << endl; |
---|
| 97 | cout << setw(10) << setprecision(5) << D << endl; |
---|
| 98 | cout << "The eigenvectors matrix:" << endl; |
---|
| 99 | cout << setw(10) << setprecision(5) << V << endl; |
---|
| 100 | |
---|
| 101 | // Check that the first eigenvector indeed has the eigenvector property |
---|
| 102 | ColumnVector v1(3); |
---|
| 103 | v1(1) = V(1,1); |
---|
| 104 | v1(2) = V(2,1); |
---|
| 105 | v1(3) = V(3,1); |
---|
| 106 | |
---|
| 107 | ColumnVector Cv1 = C * v1; |
---|
| 108 | ColumnVector lambda1_v1 = D(1) * v1; |
---|
| 109 | |
---|
| 110 | cout << "The max-norm of the difference between C*v1 and lambda1*v1 is " << |
---|
| 111 | NormInfinity(Cv1 - lambda1_v1) << endl << endl; |
---|
| 112 | |
---|
| 113 | // Build the inverse and check the result |
---|
| 114 | Matrix Ci = C.i(); |
---|
| 115 | Matrix I = Ci * C; |
---|
| 116 | |
---|
| 117 | cout << "The inverse of C is" << endl; |
---|
| 118 | cout << setw(10) << setprecision(5) << Ci << endl; |
---|
| 119 | cout << "And the inverse times C is identity" << endl; |
---|
| 120 | cout << setw(10) << setprecision(5) << I << endl; |
---|
| 121 | |
---|
| 122 | // Example for multiple solves (see NewMat documentation) |
---|
| 123 | ColumnVector r1(3), r2(3); |
---|
| 124 | for (int i = 1; i <= 3; ++i) { |
---|
| 125 | r1(i) = rand() % 10; |
---|
| 126 | r2(i) = rand() % 10; |
---|
| 127 | } |
---|
| 128 | LinearEquationSolver CLU = C; // decomposes C |
---|
| 129 | ColumnVector s1 = CLU.i() * r1; |
---|
| 130 | ColumnVector s2 = CLU.i() * r2; |
---|
| 131 | |
---|
| 132 | cout << "solution for right hand side r1" << endl; |
---|
| 133 | cout << setw(10) << setprecision(5) << s1 << endl; |
---|
| 134 | cout << "solution for right hand side r2" << endl; |
---|
| 135 | cout << setw(10) << setprecision(5) << s2 << endl; |
---|
[4566] | 136 | */ |
---|
| 137 | |
---|
[4565] | 138 | return 0; |
---|
| 139 | } |
---|