Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/orxonox/trunk/src/lib/newmat/eigen.cpp @ 4578

Last change on this file since 4578 was 4568, checked in by patrick, 19 years ago

orxonox/trunk: moved the newmat source to lib

File size: 3.4 KB
Line 
1/*******************************************************
2 A simple program that demonstrates NewMat10 library.
3 The program defines a random symmetric matrix
4 and computes its eigendecomposition.
5 For further details read the NewMat10 Reference Manual
6********************************************************/
7
8
9#define WANT_STREAM
10#define WANT_MATH
11#define WANT_FSTREAM
12
13
14
15#include <stdlib.h>
16#include <time.h>
17#include <string.h>
18
19// the following two are needed for printing
20#include <iostream.h>
21#include <iomanip.h>
22/**************************************
23 The NewMat10 include files         */
24#include "include.h"
25#include "newmat.h"
26#include "newmatap.h"
27#include "newmatio.h"
28/***************************************/
29
30
31#ifdef use_namespace
32using namespace RBD_LIBRARIES;
33#endif
34
35int main(int argc, char **argv) {
36
37 
38  SymmetricMatrix C(3);
39
40  C(1,1) = 1;
41  C(1,2) = 4;
42  C(1,3) = 4;
43  C(2,1) = 4; 
44  C(2,2) = 2;
45  C(2,3) = 4;
46  C(3,1) = 4;
47  C(3,2) = 4;
48  C(3,3) = 3;
49 
50  cout << "The symmetrix matrix C" << endl;
51  cout << setw(5) << setprecision(0) << C << endl;
52
53  Matrix                V(3,3); // for eigenvectors
54  DiagonalMatrix        D(3);   // for eigenvalues
55 
56  // the decomposition
57  Jacobi(C, D, V);
58
59
60  // Print the result
61  cout << "The eigenvalues matrix:" << endl;
62  cout << setw(10) << setprecision(5) << D << endl;
63  cout << "The eigenvectors matrix:" << endl;
64  cout << setw(10) << setprecision(5) << V << endl;
65
66  return 0;
67  /*
68  int M = 3, N = 5;
69  Matrix X(M,N); // Define an M x N general matrix
70
71  // Fill X by random numbers between 0 and 9
72  // Note that indexing into matrices in NewMat is 1-based!
73  srand(time(NULL));
74  for (int i = 1; i <= M; ++i) {
75    for (int j = 1; j <= N; ++j) {
76      X(i,j) = rand() % 10;
77    }
78  }
79
80  SymmetricMatrix C;
81  C << X * X.t(); // fill in C by X * X^t.
82  // Works because we *know* that the result is symmetric
83
84  cout << "The symmetrix matrix C" << endl;
85  cout << setw(5) << setprecision(0) << C << endl;
86       
87
88  // compute eigendecomposition of C
89  Matrix                        V(3,3); // for eigenvectors
90  DiagonalMatrix        D(3);   // for eigenvalues
91
92  // the decomposition
93  Jacobi(C, D, V);
94       
95  // Print the result
96  cout << "The eigenvalues matrix:" << endl;
97  cout << setw(10) << setprecision(5) << D << endl;
98  cout << "The eigenvectors matrix:" << endl;
99  cout << setw(10) << setprecision(5) << V << endl;
100
101  // Check that the first eigenvector indeed has the eigenvector property
102  ColumnVector v1(3);
103  v1(1) = V(1,1);
104  v1(2) = V(2,1);
105  v1(3) = V(3,1);
106
107  ColumnVector Cv1 = C * v1;
108  ColumnVector lambda1_v1 = D(1) * v1;
109
110  cout << "The max-norm of the difference between C*v1 and lambda1*v1 is " <<
111    NormInfinity(Cv1 - lambda1_v1) << endl << endl;
112
113  // Build the inverse and check the result
114  Matrix Ci = C.i();
115  Matrix I  = Ci * C;
116
117  cout << "The inverse of C is" << endl;
118  cout << setw(10) << setprecision(5) << Ci << endl;
119  cout << "And the inverse times C is identity" << endl;
120  cout << setw(10) << setprecision(5) << I << endl;
121
122  // Example for multiple solves (see NewMat documentation)
123  ColumnVector r1(3), r2(3);
124  for (int i = 1; i <= 3; ++i) {
125    r1(i) = rand() % 10;
126    r2(i) = rand() % 10;
127  }
128  LinearEquationSolver CLU = C; // decomposes C
129  ColumnVector s1 = CLU.i() * r1;
130  ColumnVector s2 = CLU.i() * r2;
131
132  cout << "solution for right hand side r1" << endl;
133  cout << setw(10) << setprecision(5) << s1 << endl;
134  cout << "solution for right hand side r2" << endl;
135  cout << setw(10) << setprecision(5) << s2 << endl;
136  */
137
138  return 0;
139}
Note: See TracBrowser for help on using the repository browser.