1 | |
---|
2 | #define WANT_STREAM |
---|
3 | #define WANT_MATH |
---|
4 | #define WANT_FSTREAM |
---|
5 | |
---|
6 | #include "newmatap.h" |
---|
7 | #include "newmatio.h" |
---|
8 | #include "newmatnl.h" |
---|
9 | |
---|
10 | #ifdef use_namespace |
---|
11 | using namespace RBD_LIBRARIES; |
---|
12 | #endif |
---|
13 | |
---|
14 | // This is a demonstration of a special case of the Garch model |
---|
15 | // Observe two series X and Y of length n |
---|
16 | // and suppose |
---|
17 | // Y(i) = beta * X(i) + epsilon(i) |
---|
18 | // where epsilon(i) is normally distributed with zero mean and variance = |
---|
19 | // h(i) = alpha0 + alpha1 * square(epsilon(i-1)) + beta1 * h(i-1). |
---|
20 | // Then this program is supposed to estimate beta, alpha0, alpha1, beta1 |
---|
21 | // The Garch model is supposed to model something like an instability |
---|
22 | // in the stock or options market following an unexpected result. |
---|
23 | // alpha1 determines the size of the instability and beta1 determines how |
---|
24 | // quickly is dies away. |
---|
25 | // We should, at least, have an X of several columns and beta as a vector |
---|
26 | |
---|
27 | inline Real square(Real x) { return x*x; } |
---|
28 | |
---|
29 | // the class that defines the GARCH log-likelihood |
---|
30 | |
---|
31 | class GARCH11_LL : public LL_D_FI |
---|
32 | { |
---|
33 | ColumnVector Y; // Y values |
---|
34 | ColumnVector X; // X values |
---|
35 | ColumnVector D; // derivatives of loglikelihood |
---|
36 | SymmetricMatrix D2; // - approximate second derivatives |
---|
37 | int n; // number of observations |
---|
38 | Real beta, alpha0, alpha1, beta1; |
---|
39 | // the parameters |
---|
40 | |
---|
41 | public: |
---|
42 | |
---|
43 | GARCH11_LL(const ColumnVector& y, const ColumnVector& x) |
---|
44 | : Y(y), X(x), n(y.Nrows()) {} |
---|
45 | // constructor - load Y and X values |
---|
46 | |
---|
47 | void Set(const ColumnVector& p) // set parameter values |
---|
48 | { |
---|
49 | para = p; |
---|
50 | beta = para(1); alpha0 = para(2); |
---|
51 | alpha1 = para(3); beta1 = para(4); |
---|
52 | } |
---|
53 | |
---|
54 | bool IsValid(); // are parameters valid |
---|
55 | Real LogLikelihood(); // return the loglikelihood |
---|
56 | ReturnMatrix Derivatives(); // derivatives of log-likelihood |
---|
57 | ReturnMatrix FI(); // Fisher Information matrix |
---|
58 | }; |
---|
59 | |
---|
60 | bool GARCH11_LL::IsValid() |
---|
61 | { return alpha0>0 && alpha1>0 && beta1>0 && (alpha1+beta1)<1.0; } |
---|
62 | |
---|
63 | Real GARCH11_LL::LogLikelihood() |
---|
64 | { |
---|
65 | // cout << endl << " "; |
---|
66 | // cout << setw(10) << setprecision(5) << beta; |
---|
67 | // cout << setw(10) << setprecision(5) << alpha0; |
---|
68 | // cout << setw(10) << setprecision(5) << alpha1; |
---|
69 | // cout << setw(10) << setprecision(5) << beta1; |
---|
70 | // cout << endl; |
---|
71 | ColumnVector H(n); // residual variances |
---|
72 | ColumnVector U = Y - X * beta; // the residuals |
---|
73 | ColumnVector LH(n); // derivative of log-likelihood wrt H |
---|
74 | // each row corresponds to one observation |
---|
75 | LH(1)=0; |
---|
76 | Matrix Hderiv(n,4); // rectangular matrix of derivatives |
---|
77 | // of H wrt parameters |
---|
78 | // each row corresponds to one observation |
---|
79 | // each column to one of the parameters |
---|
80 | |
---|
81 | // Regard Y(1) as fixed and don't include in likelihood |
---|
82 | // then put in an expected value of H(1) in place of actual value |
---|
83 | // which we don't know. Use |
---|
84 | // E{H(i)} = alpha0 + alpha1 * E{square(epsilon(i-1))} + beta1 * E{H(i-1)} |
---|
85 | // and E{square(epsilon(i-1))} = E{H(i-1)} = E{H(i)} |
---|
86 | Real denom = (1-alpha1-beta1); |
---|
87 | H(1) = alpha0/denom; // the expected value of H |
---|
88 | Hderiv(1,1) = 0; |
---|
89 | Hderiv(1,2) = 1.0 / denom; |
---|
90 | Hderiv(1,3) = alpha0 / square(denom); |
---|
91 | Hderiv(1,4) = Hderiv(1,3); |
---|
92 | Real LL = 0.0; // the log likelihood |
---|
93 | Real sum1 = 0; // for forming derivative wrt beta |
---|
94 | Real sum2 = 0; // for forming second derivative wrt beta |
---|
95 | for (int i=2; i<=n; i++) |
---|
96 | { |
---|
97 | Real u1 = U(i-1); Real h1 = H(i-1); |
---|
98 | Real h = alpha0 + alpha1*square(u1) + beta1*h1; // variance of this obsv. |
---|
99 | H(i) = h; Real u = U(i); |
---|
100 | LL += log(h) + square(u) / h; // -2 * log likelihood |
---|
101 | // Hderiv are derivatives of h with respect to the parameters |
---|
102 | // need to allow for h1 depending on parameters |
---|
103 | Hderiv(i,1) = -2*u1*alpha1*X(i-1) + beta1*Hderiv(i-1,1); // beta |
---|
104 | Hderiv(i,2) = 1 + beta1*Hderiv(i-1,2); // alpha0 |
---|
105 | Hderiv(i,3) = square(u1) + beta1*Hderiv(i-1,3); // alpha1 |
---|
106 | Hderiv(i,4) = h1 + beta1*Hderiv(i-1,4); // beta1 |
---|
107 | LH(i) = -0.5 * (1/h - square(u/h)); |
---|
108 | sum1 += u * X(i)/ h; |
---|
109 | sum2 += square(X(i)) / h; |
---|
110 | } |
---|
111 | D = Hderiv.t()*LH; // derivatives of likelihood wrt parameters |
---|
112 | D(1) += sum1; // add on deriv wrt beta from square(u) term |
---|
113 | // cout << setw(10) << setprecision(5) << D << endl; |
---|
114 | |
---|
115 | // do minus expected value of second derivatives |
---|
116 | if (wg) // do only if second derivatives wanted |
---|
117 | { |
---|
118 | Hderiv.Row(1) = 0.0; |
---|
119 | Hderiv = H.AsDiagonal().i() * Hderiv; |
---|
120 | D2 << Hderiv.t() * Hderiv; D2 = D2 / 2.0; |
---|
121 | D2(1,1) += sum2; |
---|
122 | // cout << setw(10) << setprecision(5) << D2 << endl; |
---|
123 | // DiagonalMatrix DX; EigenValues(D2,DX); |
---|
124 | // cout << setw(10) << setprecision(5) << DX << endl; |
---|
125 | |
---|
126 | } |
---|
127 | return -0.5 * LL; |
---|
128 | } |
---|
129 | |
---|
130 | ReturnMatrix GARCH11_LL::Derivatives() |
---|
131 | { return D; } |
---|
132 | |
---|
133 | ReturnMatrix GARCH11_LL::FI() |
---|
134 | { |
---|
135 | if (!wg) cout << endl << "unexpected call of FI" << endl; |
---|
136 | return D2; |
---|
137 | } |
---|
138 | |
---|
139 | |
---|
140 | |
---|
141 | int main() |
---|
142 | { |
---|
143 | // get data |
---|
144 | ifstream fin("garch.dat"); |
---|
145 | if (!fin) { cout << "cannot find garch.dat\n"; exit(1); } |
---|
146 | int n; fin >> n; // series length |
---|
147 | // Y contains the dependant variable, X the predictor variable |
---|
148 | ColumnVector Y(n), X(n); |
---|
149 | int i; |
---|
150 | for (i=1; i<=n; i++) fin >> Y(i) >> X(i); |
---|
151 | cout << "Read " << n << " data points - begin fit\n\n"; |
---|
152 | // now do the fit |
---|
153 | ColumnVector H(n); |
---|
154 | GARCH11_LL garch11(Y,X); // loglikehood "object" |
---|
155 | MLE_D_FI mle_d_fi(garch11,100,0.0001); // mle "object" |
---|
156 | ColumnVector Para(4); // to hold the parameters |
---|
157 | Para << 0.0 << 0.1 << 0.1 << 0.1; // starting values |
---|
158 | // (Should change starting values to a more intelligent formula) |
---|
159 | mle_d_fi.Fit(Para); // do the fit |
---|
160 | ColumnVector SE; |
---|
161 | mle_d_fi.GetStandardErrors(SE); |
---|
162 | cout << "\n\n"; |
---|
163 | cout << "estimates and standard errors\n"; |
---|
164 | cout << setw(15) << setprecision(5) << (Para | SE) << endl << endl; |
---|
165 | SymmetricMatrix Corr; |
---|
166 | mle_d_fi.GetCorrelations(Corr); |
---|
167 | cout << "correlation matrix\n"; |
---|
168 | cout << setw(10) << setprecision(2) << Corr << endl << endl; |
---|
169 | cout << "inverse of correlation matrix\n"; |
---|
170 | cout << setw(10) << setprecision(2) << Corr.i() << endl << endl; |
---|
171 | return 0; |
---|
172 | } |
---|
173 | |
---|
174 | |
---|
175 | |
---|