1 | //$$ newmat8.cpp Advanced LU transform, scalar functions |
---|
2 | |
---|
3 | // Copyright (C) 1991,2,3,4,8: R B Davies |
---|
4 | |
---|
5 | #define WANT_MATH |
---|
6 | |
---|
7 | #include "include.h" |
---|
8 | |
---|
9 | #include "newmat.h" |
---|
10 | #include "newmatrc.h" |
---|
11 | #include "precisio.h" |
---|
12 | |
---|
13 | #ifdef use_namespace |
---|
14 | namespace NEWMAT { |
---|
15 | #endif |
---|
16 | |
---|
17 | |
---|
18 | #ifdef DO_REPORT |
---|
19 | #define REPORT { static ExeCounter ExeCount(__LINE__,8); ++ExeCount; } |
---|
20 | #else |
---|
21 | #define REPORT {} |
---|
22 | #endif |
---|
23 | |
---|
24 | |
---|
25 | /************************** LU transformation ****************************/ |
---|
26 | |
---|
27 | void CroutMatrix::ludcmp() |
---|
28 | // LU decomposition from Golub & Van Loan, algorithm 3.4.1, (the "outer |
---|
29 | // product" version). |
---|
30 | // This replaces the code derived from Numerical Recipes in C in previous |
---|
31 | // versions of newmat and being row oriented runs much faster with large |
---|
32 | // matrices. |
---|
33 | { |
---|
34 | REPORT |
---|
35 | Tracer trace( "Crout(ludcmp)" ); sing = false; |
---|
36 | Real* akk = store; // runs down diagonal |
---|
37 | |
---|
38 | Real big = fabs(*akk); int mu = 0; Real* ai = akk; int k; |
---|
39 | |
---|
40 | for (k = 1; k < nrows; k++) |
---|
41 | { |
---|
42 | ai += nrows; const Real trybig = fabs(*ai); |
---|
43 | if (big < trybig) { big = trybig; mu = k; } |
---|
44 | } |
---|
45 | |
---|
46 | |
---|
47 | if (nrows) for (k = 0;;) |
---|
48 | { |
---|
49 | /* |
---|
50 | int mu1; |
---|
51 | { |
---|
52 | Real big = fabs(*akk); mu1 = k; Real* ai = akk; int i; |
---|
53 | |
---|
54 | for (i = k+1; i < nrows; i++) |
---|
55 | { |
---|
56 | ai += nrows; const Real trybig = fabs(*ai); |
---|
57 | if (big < trybig) { big = trybig; mu1 = i; } |
---|
58 | } |
---|
59 | } |
---|
60 | if (mu1 != mu) cout << k << " " << mu << " " << mu1 << endl; |
---|
61 | */ |
---|
62 | |
---|
63 | indx[k] = mu; |
---|
64 | |
---|
65 | if (mu != k) //row swap |
---|
66 | { |
---|
67 | Real* a1 = store + nrows * k; Real* a2 = store + nrows * mu; d = !d; |
---|
68 | int j = nrows; |
---|
69 | while (j--) { const Real temp = *a1; *a1++ = *a2; *a2++ = temp; } |
---|
70 | } |
---|
71 | |
---|
72 | Real diag = *akk; big = 0; mu = k + 1; |
---|
73 | if (diag != 0) |
---|
74 | { |
---|
75 | ai = akk; int i = nrows - k - 1; |
---|
76 | while (i--) |
---|
77 | { |
---|
78 | ai += nrows; Real* al = ai; Real mult = *al / diag; *al = mult; |
---|
79 | int l = nrows - k - 1; Real* aj = akk; |
---|
80 | // work out the next pivot as part of this loop |
---|
81 | // this saves a column operation |
---|
82 | if (l-- != 0) |
---|
83 | { |
---|
84 | *(++al) -= (mult * *(++aj)); |
---|
85 | const Real trybig = fabs(*al); |
---|
86 | if (big < trybig) { big = trybig; mu = nrows - i - 1; } |
---|
87 | while (l--) *(++al) -= (mult * *(++aj)); |
---|
88 | } |
---|
89 | } |
---|
90 | } |
---|
91 | else sing = true; |
---|
92 | if (++k == nrows) break; // so next line won't overflow |
---|
93 | akk += nrows + 1; |
---|
94 | } |
---|
95 | } |
---|
96 | |
---|
97 | void CroutMatrix::lubksb(Real* B, int mini) |
---|
98 | { |
---|
99 | REPORT |
---|
100 | // this has been adapted from Numerical Recipes in C. The code has been |
---|
101 | // substantially streamlined, so I do not think much of the original |
---|
102 | // copyright remains. However there is not much opportunity for |
---|
103 | // variation in the code, so it is still similar to the NR code. |
---|
104 | // I follow the NR code in skipping over initial zeros in the B vector. |
---|
105 | |
---|
106 | Tracer trace("Crout(lubksb)"); |
---|
107 | if (sing) Throw(SingularException(*this)); |
---|
108 | int i, j, ii = nrows; // ii initialised : B might be all zeros |
---|
109 | |
---|
110 | |
---|
111 | // scan for first non-zero in B |
---|
112 | for (i = 0; i < nrows; i++) |
---|
113 | { |
---|
114 | int ip = indx[i]; Real temp = B[ip]; B[ip] = B[i]; B[i] = temp; |
---|
115 | if (temp != 0.0) { ii = i; break; } |
---|
116 | } |
---|
117 | |
---|
118 | Real* bi; Real* ai; |
---|
119 | i = ii + 1; |
---|
120 | |
---|
121 | if (i < nrows) |
---|
122 | { |
---|
123 | bi = B + ii; ai = store + ii + i * nrows; |
---|
124 | for (;;) |
---|
125 | { |
---|
126 | int ip = indx[i]; Real sum = B[ip]; B[ip] = B[i]; |
---|
127 | Real* aij = ai; Real* bj = bi; j = i - ii; |
---|
128 | while (j--) sum -= *aij++ * *bj++; |
---|
129 | B[i] = sum; |
---|
130 | if (++i == nrows) break; |
---|
131 | ai += nrows; |
---|
132 | } |
---|
133 | } |
---|
134 | |
---|
135 | ai = store + nrows * nrows; |
---|
136 | |
---|
137 | for (i = nrows - 1; i >= mini; i--) |
---|
138 | { |
---|
139 | Real* bj = B+i; ai -= nrows; Real* ajx = ai+i; |
---|
140 | Real sum = *bj; Real diag = *ajx; |
---|
141 | j = nrows - i; while(--j) sum -= *(++ajx) * *(++bj); |
---|
142 | B[i] = sum / diag; |
---|
143 | } |
---|
144 | } |
---|
145 | |
---|
146 | /****************************** scalar functions ****************************/ |
---|
147 | |
---|
148 | inline Real square(Real x) { return x*x; } |
---|
149 | |
---|
150 | Real GeneralMatrix::SumSquare() const |
---|
151 | { |
---|
152 | REPORT |
---|
153 | Real sum = 0.0; int i = storage; Real* s = store; |
---|
154 | while (i--) sum += square(*s++); |
---|
155 | ((GeneralMatrix&)*this).tDelete(); return sum; |
---|
156 | } |
---|
157 | |
---|
158 | Real GeneralMatrix::SumAbsoluteValue() const |
---|
159 | { |
---|
160 | REPORT |
---|
161 | Real sum = 0.0; int i = storage; Real* s = store; |
---|
162 | while (i--) sum += fabs(*s++); |
---|
163 | ((GeneralMatrix&)*this).tDelete(); return sum; |
---|
164 | } |
---|
165 | |
---|
166 | Real GeneralMatrix::Sum() const |
---|
167 | { |
---|
168 | REPORT |
---|
169 | Real sum = 0.0; int i = storage; Real* s = store; |
---|
170 | while (i--) sum += *s++; |
---|
171 | ((GeneralMatrix&)*this).tDelete(); return sum; |
---|
172 | } |
---|
173 | |
---|
174 | // maxima and minima |
---|
175 | |
---|
176 | // There are three sets of routines |
---|
177 | // MaximumAbsoluteValue, MinimumAbsoluteValue, Maximum, Minimum |
---|
178 | // ... these find just the maxima and minima |
---|
179 | // MaximumAbsoluteValue1, MinimumAbsoluteValue1, Maximum1, Minimum1 |
---|
180 | // ... these find the maxima and minima and their locations in a |
---|
181 | // one dimensional object |
---|
182 | // MaximumAbsoluteValue2, MinimumAbsoluteValue2, Maximum2, Minimum2 |
---|
183 | // ... these find the maxima and minima and their locations in a |
---|
184 | // two dimensional object |
---|
185 | |
---|
186 | // If the matrix has no values throw an exception |
---|
187 | |
---|
188 | // If we do not want the location find the maximum or minimum on the |
---|
189 | // array stored by GeneralMatrix |
---|
190 | // This won't work for BandMatrices. We call ClearCorner for |
---|
191 | // MaximumAbsoluteValue but for the others use the AbsoluteMinimumValue2 |
---|
192 | // version and discard the location. |
---|
193 | |
---|
194 | // For one dimensional objects, when we want the location of the |
---|
195 | // maximum or minimum, work with the array stored by GeneralMatrix |
---|
196 | |
---|
197 | // For two dimensional objects where we want the location of the maximum or |
---|
198 | // minimum proceed as follows: |
---|
199 | |
---|
200 | // For rectangular matrices use the array stored by GeneralMatrix and |
---|
201 | // deduce the location from the location in the GeneralMatrix |
---|
202 | |
---|
203 | // For other two dimensional matrices use the Matrix Row routine to find the |
---|
204 | // maximum or minimum for each row. |
---|
205 | |
---|
206 | static void NullMatrixError(const GeneralMatrix* gm) |
---|
207 | { |
---|
208 | ((GeneralMatrix&)*gm).tDelete(); |
---|
209 | Throw(ProgramException("Maximum or minimum of null matrix")); |
---|
210 | } |
---|
211 | |
---|
212 | Real GeneralMatrix::MaximumAbsoluteValue() const |
---|
213 | { |
---|
214 | REPORT |
---|
215 | if (storage == 0) NullMatrixError(this); |
---|
216 | Real maxval = 0.0; int l = storage; Real* s = store; |
---|
217 | while (l--) { Real a = fabs(*s++); if (maxval < a) maxval = a; } |
---|
218 | ((GeneralMatrix&)*this).tDelete(); return maxval; |
---|
219 | } |
---|
220 | |
---|
221 | Real GeneralMatrix::MaximumAbsoluteValue1(int& i) const |
---|
222 | { |
---|
223 | REPORT |
---|
224 | if (storage == 0) NullMatrixError(this); |
---|
225 | Real maxval = 0.0; int l = storage; Real* s = store; int li = storage; |
---|
226 | while (l--) |
---|
227 | { Real a = fabs(*s++); if (maxval <= a) { maxval = a; li = l; } } |
---|
228 | i = storage - li; |
---|
229 | ((GeneralMatrix&)*this).tDelete(); return maxval; |
---|
230 | } |
---|
231 | |
---|
232 | Real GeneralMatrix::MinimumAbsoluteValue() const |
---|
233 | { |
---|
234 | REPORT |
---|
235 | if (storage == 0) NullMatrixError(this); |
---|
236 | int l = storage - 1; Real* s = store; Real minval = fabs(*s++); |
---|
237 | while (l--) { Real a = fabs(*s++); if (minval > a) minval = a; } |
---|
238 | ((GeneralMatrix&)*this).tDelete(); return minval; |
---|
239 | } |
---|
240 | |
---|
241 | Real GeneralMatrix::MinimumAbsoluteValue1(int& i) const |
---|
242 | { |
---|
243 | REPORT |
---|
244 | if (storage == 0) NullMatrixError(this); |
---|
245 | int l = storage - 1; Real* s = store; Real minval = fabs(*s++); int li = l; |
---|
246 | while (l--) |
---|
247 | { Real a = fabs(*s++); if (minval >= a) { minval = a; li = l; } } |
---|
248 | i = storage - li; |
---|
249 | ((GeneralMatrix&)*this).tDelete(); return minval; |
---|
250 | } |
---|
251 | |
---|
252 | Real GeneralMatrix::Maximum() const |
---|
253 | { |
---|
254 | REPORT |
---|
255 | if (storage == 0) NullMatrixError(this); |
---|
256 | int l = storage - 1; Real* s = store; Real maxval = *s++; |
---|
257 | while (l--) { Real a = *s++; if (maxval < a) maxval = a; } |
---|
258 | ((GeneralMatrix&)*this).tDelete(); return maxval; |
---|
259 | } |
---|
260 | |
---|
261 | Real GeneralMatrix::Maximum1(int& i) const |
---|
262 | { |
---|
263 | REPORT |
---|
264 | if (storage == 0) NullMatrixError(this); |
---|
265 | int l = storage - 1; Real* s = store; Real maxval = *s++; int li = l; |
---|
266 | while (l--) { Real a = *s++; if (maxval <= a) { maxval = a; li = l; } } |
---|
267 | i = storage - li; |
---|
268 | ((GeneralMatrix&)*this).tDelete(); return maxval; |
---|
269 | } |
---|
270 | |
---|
271 | Real GeneralMatrix::Minimum() const |
---|
272 | { |
---|
273 | REPORT |
---|
274 | if (storage == 0) NullMatrixError(this); |
---|
275 | int l = storage - 1; Real* s = store; Real minval = *s++; |
---|
276 | while (l--) { Real a = *s++; if (minval > a) minval = a; } |
---|
277 | ((GeneralMatrix&)*this).tDelete(); return minval; |
---|
278 | } |
---|
279 | |
---|
280 | Real GeneralMatrix::Minimum1(int& i) const |
---|
281 | { |
---|
282 | REPORT |
---|
283 | if (storage == 0) NullMatrixError(this); |
---|
284 | int l = storage - 1; Real* s = store; Real minval = *s++; int li = l; |
---|
285 | while (l--) { Real a = *s++; if (minval >= a) { minval = a; li = l; } } |
---|
286 | i = storage - li; |
---|
287 | ((GeneralMatrix&)*this).tDelete(); return minval; |
---|
288 | } |
---|
289 | |
---|
290 | Real GeneralMatrix::MaximumAbsoluteValue2(int& i, int& j) const |
---|
291 | { |
---|
292 | REPORT |
---|
293 | if (storage == 0) NullMatrixError(this); |
---|
294 | Real maxval = 0.0; int nr = Nrows(); |
---|
295 | MatrixRow mr((GeneralMatrix*)this, LoadOnEntry+DirectPart); |
---|
296 | for (int r = 1; r <= nr; r++) |
---|
297 | { |
---|
298 | int c; maxval = mr.MaximumAbsoluteValue1(maxval, c); |
---|
299 | if (c > 0) { i = r; j = c; } |
---|
300 | mr.Next(); |
---|
301 | } |
---|
302 | ((GeneralMatrix&)*this).tDelete(); return maxval; |
---|
303 | } |
---|
304 | |
---|
305 | Real GeneralMatrix::MinimumAbsoluteValue2(int& i, int& j) const |
---|
306 | { |
---|
307 | REPORT |
---|
308 | if (storage == 0) NullMatrixError(this); |
---|
309 | Real minval = FloatingPointPrecision::Maximum(); int nr = Nrows(); |
---|
310 | MatrixRow mr((GeneralMatrix*)this, LoadOnEntry+DirectPart); |
---|
311 | for (int r = 1; r <= nr; r++) |
---|
312 | { |
---|
313 | int c; minval = mr.MinimumAbsoluteValue1(minval, c); |
---|
314 | if (c > 0) { i = r; j = c; } |
---|
315 | mr.Next(); |
---|
316 | } |
---|
317 | ((GeneralMatrix&)*this).tDelete(); return minval; |
---|
318 | } |
---|
319 | |
---|
320 | Real GeneralMatrix::Maximum2(int& i, int& j) const |
---|
321 | { |
---|
322 | REPORT |
---|
323 | if (storage == 0) NullMatrixError(this); |
---|
324 | Real maxval = -FloatingPointPrecision::Maximum(); int nr = Nrows(); |
---|
325 | MatrixRow mr((GeneralMatrix*)this, LoadOnEntry+DirectPart); |
---|
326 | for (int r = 1; r <= nr; r++) |
---|
327 | { |
---|
328 | int c; maxval = mr.Maximum1(maxval, c); |
---|
329 | if (c > 0) { i = r; j = c; } |
---|
330 | mr.Next(); |
---|
331 | } |
---|
332 | ((GeneralMatrix&)*this).tDelete(); return maxval; |
---|
333 | } |
---|
334 | |
---|
335 | Real GeneralMatrix::Minimum2(int& i, int& j) const |
---|
336 | { |
---|
337 | REPORT |
---|
338 | if (storage == 0) NullMatrixError(this); |
---|
339 | Real minval = FloatingPointPrecision::Maximum(); int nr = Nrows(); |
---|
340 | MatrixRow mr((GeneralMatrix*)this, LoadOnEntry+DirectPart); |
---|
341 | for (int r = 1; r <= nr; r++) |
---|
342 | { |
---|
343 | int c; minval = mr.Minimum1(minval, c); |
---|
344 | if (c > 0) { i = r; j = c; } |
---|
345 | mr.Next(); |
---|
346 | } |
---|
347 | ((GeneralMatrix&)*this).tDelete(); return minval; |
---|
348 | } |
---|
349 | |
---|
350 | Real Matrix::MaximumAbsoluteValue2(int& i, int& j) const |
---|
351 | { |
---|
352 | REPORT |
---|
353 | int k; Real m = GeneralMatrix::MaximumAbsoluteValue1(k); k--; |
---|
354 | i = k / Ncols(); j = k - i * Ncols(); i++; j++; |
---|
355 | return m; |
---|
356 | } |
---|
357 | |
---|
358 | Real Matrix::MinimumAbsoluteValue2(int& i, int& j) const |
---|
359 | { |
---|
360 | REPORT |
---|
361 | int k; Real m = GeneralMatrix::MinimumAbsoluteValue1(k); k--; |
---|
362 | i = k / Ncols(); j = k - i * Ncols(); i++; j++; |
---|
363 | return m; |
---|
364 | } |
---|
365 | |
---|
366 | Real Matrix::Maximum2(int& i, int& j) const |
---|
367 | { |
---|
368 | REPORT |
---|
369 | int k; Real m = GeneralMatrix::Maximum1(k); k--; |
---|
370 | i = k / Ncols(); j = k - i * Ncols(); i++; j++; |
---|
371 | return m; |
---|
372 | } |
---|
373 | |
---|
374 | Real Matrix::Minimum2(int& i, int& j) const |
---|
375 | { |
---|
376 | REPORT |
---|
377 | int k; Real m = GeneralMatrix::Minimum1(k); k--; |
---|
378 | i = k / Ncols(); j = k - i * Ncols(); i++; j++; |
---|
379 | return m; |
---|
380 | } |
---|
381 | |
---|
382 | Real SymmetricMatrix::SumSquare() const |
---|
383 | { |
---|
384 | REPORT |
---|
385 | Real sum1 = 0.0; Real sum2 = 0.0; Real* s = store; int nr = nrows; |
---|
386 | for (int i = 0; i<nr; i++) |
---|
387 | { |
---|
388 | int j = i; |
---|
389 | while (j--) sum2 += square(*s++); |
---|
390 | sum1 += square(*s++); |
---|
391 | } |
---|
392 | ((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2; |
---|
393 | } |
---|
394 | |
---|
395 | Real SymmetricMatrix::SumAbsoluteValue() const |
---|
396 | { |
---|
397 | REPORT |
---|
398 | Real sum1 = 0.0; Real sum2 = 0.0; Real* s = store; int nr = nrows; |
---|
399 | for (int i = 0; i<nr; i++) |
---|
400 | { |
---|
401 | int j = i; |
---|
402 | while (j--) sum2 += fabs(*s++); |
---|
403 | sum1 += fabs(*s++); |
---|
404 | } |
---|
405 | ((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2; |
---|
406 | } |
---|
407 | |
---|
408 | Real IdentityMatrix::SumAbsoluteValue() const |
---|
409 | { REPORT return fabs(Trace()); } // no need to do tDelete? |
---|
410 | |
---|
411 | Real SymmetricMatrix::Sum() const |
---|
412 | { |
---|
413 | REPORT |
---|
414 | Real sum1 = 0.0; Real sum2 = 0.0; Real* s = store; int nr = nrows; |
---|
415 | for (int i = 0; i<nr; i++) |
---|
416 | { |
---|
417 | int j = i; |
---|
418 | while (j--) sum2 += *s++; |
---|
419 | sum1 += *s++; |
---|
420 | } |
---|
421 | ((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2; |
---|
422 | } |
---|
423 | |
---|
424 | Real IdentityMatrix::SumSquare() const |
---|
425 | { |
---|
426 | Real sum = *store * *store * nrows; |
---|
427 | ((GeneralMatrix&)*this).tDelete(); return sum; |
---|
428 | } |
---|
429 | |
---|
430 | |
---|
431 | Real BaseMatrix::SumSquare() const |
---|
432 | { |
---|
433 | REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate(); |
---|
434 | Real s = gm->SumSquare(); return s; |
---|
435 | } |
---|
436 | |
---|
437 | Real BaseMatrix::NormFrobenius() const |
---|
438 | { REPORT return sqrt(SumSquare()); } |
---|
439 | |
---|
440 | Real BaseMatrix::SumAbsoluteValue() const |
---|
441 | { |
---|
442 | REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate(); |
---|
443 | Real s = gm->SumAbsoluteValue(); return s; |
---|
444 | } |
---|
445 | |
---|
446 | Real BaseMatrix::Sum() const |
---|
447 | { |
---|
448 | REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate(); |
---|
449 | Real s = gm->Sum(); return s; |
---|
450 | } |
---|
451 | |
---|
452 | Real BaseMatrix::MaximumAbsoluteValue() const |
---|
453 | { |
---|
454 | REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate(); |
---|
455 | Real s = gm->MaximumAbsoluteValue(); return s; |
---|
456 | } |
---|
457 | |
---|
458 | Real BaseMatrix::MaximumAbsoluteValue1(int& i) const |
---|
459 | { |
---|
460 | REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate(); |
---|
461 | Real s = gm->MaximumAbsoluteValue1(i); return s; |
---|
462 | } |
---|
463 | |
---|
464 | Real BaseMatrix::MaximumAbsoluteValue2(int& i, int& j) const |
---|
465 | { |
---|
466 | REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate(); |
---|
467 | Real s = gm->MaximumAbsoluteValue2(i, j); return s; |
---|
468 | } |
---|
469 | |
---|
470 | Real BaseMatrix::MinimumAbsoluteValue() const |
---|
471 | { |
---|
472 | REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate(); |
---|
473 | Real s = gm->MinimumAbsoluteValue(); return s; |
---|
474 | } |
---|
475 | |
---|
476 | Real BaseMatrix::MinimumAbsoluteValue1(int& i) const |
---|
477 | { |
---|
478 | REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate(); |
---|
479 | Real s = gm->MinimumAbsoluteValue1(i); return s; |
---|
480 | } |
---|
481 | |
---|
482 | Real BaseMatrix::MinimumAbsoluteValue2(int& i, int& j) const |
---|
483 | { |
---|
484 | REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate(); |
---|
485 | Real s = gm->MinimumAbsoluteValue2(i, j); return s; |
---|
486 | } |
---|
487 | |
---|
488 | Real BaseMatrix::Maximum() const |
---|
489 | { |
---|
490 | REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate(); |
---|
491 | Real s = gm->Maximum(); return s; |
---|
492 | } |
---|
493 | |
---|
494 | Real BaseMatrix::Maximum1(int& i) const |
---|
495 | { |
---|
496 | REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate(); |
---|
497 | Real s = gm->Maximum1(i); return s; |
---|
498 | } |
---|
499 | |
---|
500 | Real BaseMatrix::Maximum2(int& i, int& j) const |
---|
501 | { |
---|
502 | REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate(); |
---|
503 | Real s = gm->Maximum2(i, j); return s; |
---|
504 | } |
---|
505 | |
---|
506 | Real BaseMatrix::Minimum() const |
---|
507 | { |
---|
508 | REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate(); |
---|
509 | Real s = gm->Minimum(); return s; |
---|
510 | } |
---|
511 | |
---|
512 | Real BaseMatrix::Minimum1(int& i) const |
---|
513 | { |
---|
514 | REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate(); |
---|
515 | Real s = gm->Minimum1(i); return s; |
---|
516 | } |
---|
517 | |
---|
518 | Real BaseMatrix::Minimum2(int& i, int& j) const |
---|
519 | { |
---|
520 | REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate(); |
---|
521 | Real s = gm->Minimum2(i, j); return s; |
---|
522 | } |
---|
523 | |
---|
524 | Real DotProduct(const Matrix& A, const Matrix& B) |
---|
525 | { |
---|
526 | REPORT |
---|
527 | int n = A.storage; |
---|
528 | if (n != B.storage) Throw(IncompatibleDimensionsException(A,B)); |
---|
529 | Real sum = 0.0; Real* a = A.store; Real* b = B.store; |
---|
530 | while (n--) sum += *a++ * *b++; |
---|
531 | return sum; |
---|
532 | } |
---|
533 | |
---|
534 | Real Matrix::Trace() const |
---|
535 | { |
---|
536 | REPORT |
---|
537 | Tracer trace("Trace"); |
---|
538 | int i = nrows; int d = i+1; |
---|
539 | if (i != ncols) Throw(NotSquareException(*this)); |
---|
540 | Real sum = 0.0; Real* s = store; |
---|
541 | // while (i--) { sum += *s; s += d; } |
---|
542 | if (i) for (;;) { sum += *s; if (!(--i)) break; s += d; } |
---|
543 | ((GeneralMatrix&)*this).tDelete(); return sum; |
---|
544 | } |
---|
545 | |
---|
546 | Real DiagonalMatrix::Trace() const |
---|
547 | { |
---|
548 | REPORT |
---|
549 | int i = nrows; Real sum = 0.0; Real* s = store; |
---|
550 | while (i--) sum += *s++; |
---|
551 | ((GeneralMatrix&)*this).tDelete(); return sum; |
---|
552 | } |
---|
553 | |
---|
554 | Real SymmetricMatrix::Trace() const |
---|
555 | { |
---|
556 | REPORT |
---|
557 | int i = nrows; Real sum = 0.0; Real* s = store; int j = 2; |
---|
558 | // while (i--) { sum += *s; s += j++; } |
---|
559 | if (i) for (;;) { sum += *s; if (!(--i)) break; s += j++; } |
---|
560 | ((GeneralMatrix&)*this).tDelete(); return sum; |
---|
561 | } |
---|
562 | |
---|
563 | Real LowerTriangularMatrix::Trace() const |
---|
564 | { |
---|
565 | REPORT |
---|
566 | int i = nrows; Real sum = 0.0; Real* s = store; int j = 2; |
---|
567 | // while (i--) { sum += *s; s += j++; } |
---|
568 | if (i) for (;;) { sum += *s; if (!(--i)) break; s += j++; } |
---|
569 | ((GeneralMatrix&)*this).tDelete(); return sum; |
---|
570 | } |
---|
571 | |
---|
572 | Real UpperTriangularMatrix::Trace() const |
---|
573 | { |
---|
574 | REPORT |
---|
575 | int i = nrows; Real sum = 0.0; Real* s = store; |
---|
576 | while (i) { sum += *s; s += i--; } // won t cause a problem |
---|
577 | ((GeneralMatrix&)*this).tDelete(); return sum; |
---|
578 | } |
---|
579 | |
---|
580 | Real BandMatrix::Trace() const |
---|
581 | { |
---|
582 | REPORT |
---|
583 | int i = nrows; int w = lower+upper+1; |
---|
584 | Real sum = 0.0; Real* s = store+lower; |
---|
585 | // while (i--) { sum += *s; s += w; } |
---|
586 | if (i) for (;;) { sum += *s; if (!(--i)) break; s += w; } |
---|
587 | ((GeneralMatrix&)*this).tDelete(); return sum; |
---|
588 | } |
---|
589 | |
---|
590 | Real SymmetricBandMatrix::Trace() const |
---|
591 | { |
---|
592 | REPORT |
---|
593 | int i = nrows; int w = lower+1; |
---|
594 | Real sum = 0.0; Real* s = store+lower; |
---|
595 | // while (i--) { sum += *s; s += w; } |
---|
596 | if (i) for (;;) { sum += *s; if (!(--i)) break; s += w; } |
---|
597 | ((GeneralMatrix&)*this).tDelete(); return sum; |
---|
598 | } |
---|
599 | |
---|
600 | Real IdentityMatrix::Trace() const |
---|
601 | { |
---|
602 | Real sum = *store * nrows; |
---|
603 | ((GeneralMatrix&)*this).tDelete(); return sum; |
---|
604 | } |
---|
605 | |
---|
606 | |
---|
607 | Real BaseMatrix::Trace() const |
---|
608 | { |
---|
609 | REPORT |
---|
610 | MatrixType Diag = MatrixType::Dg; Diag.SetDataLossOK(); |
---|
611 | GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate(Diag); |
---|
612 | Real sum = gm->Trace(); return sum; |
---|
613 | } |
---|
614 | |
---|
615 | void LogAndSign::operator*=(Real x) |
---|
616 | { |
---|
617 | if (x > 0.0) { log_value += log(x); } |
---|
618 | else if (x < 0.0) { log_value += log(-x); sign = -sign; } |
---|
619 | else sign = 0; |
---|
620 | } |
---|
621 | |
---|
622 | void LogAndSign::PowEq(int k) |
---|
623 | { |
---|
624 | if (sign) |
---|
625 | { |
---|
626 | log_value *= k; |
---|
627 | if ( (k & 1) == 0 ) sign = 1; |
---|
628 | } |
---|
629 | } |
---|
630 | |
---|
631 | Real LogAndSign::Value() const |
---|
632 | { |
---|
633 | Tracer et("LogAndSign::Value"); |
---|
634 | if (log_value >= FloatingPointPrecision::LnMaximum()) |
---|
635 | Throw(OverflowException("Overflow in exponential")); |
---|
636 | return sign * exp(log_value); |
---|
637 | } |
---|
638 | |
---|
639 | LogAndSign::LogAndSign(Real f) |
---|
640 | { |
---|
641 | if (f == 0.0) { log_value = 0.0; sign = 0; return; } |
---|
642 | else if (f < 0.0) { sign = -1; f = -f; } |
---|
643 | else sign = 1; |
---|
644 | log_value = log(f); |
---|
645 | } |
---|
646 | |
---|
647 | LogAndSign DiagonalMatrix::LogDeterminant() const |
---|
648 | { |
---|
649 | REPORT |
---|
650 | int i = nrows; LogAndSign sum; Real* s = store; |
---|
651 | while (i--) sum *= *s++; |
---|
652 | ((GeneralMatrix&)*this).tDelete(); return sum; |
---|
653 | } |
---|
654 | |
---|
655 | LogAndSign LowerTriangularMatrix::LogDeterminant() const |
---|
656 | { |
---|
657 | REPORT |
---|
658 | int i = nrows; LogAndSign sum; Real* s = store; int j = 2; |
---|
659 | // while (i--) { sum *= *s; s += j++; } |
---|
660 | if (i) for(;;) { sum *= *s; if (!(--i)) break; s += j++; } |
---|
661 | ((GeneralMatrix&)*this).tDelete(); return sum; |
---|
662 | } |
---|
663 | |
---|
664 | LogAndSign UpperTriangularMatrix::LogDeterminant() const |
---|
665 | { |
---|
666 | REPORT |
---|
667 | int i = nrows; LogAndSign sum; Real* s = store; |
---|
668 | while (i) { sum *= *s; s += i--; } |
---|
669 | ((GeneralMatrix&)*this).tDelete(); return sum; |
---|
670 | } |
---|
671 | |
---|
672 | LogAndSign IdentityMatrix::LogDeterminant() const |
---|
673 | { |
---|
674 | REPORT |
---|
675 | int i = nrows; LogAndSign sum; |
---|
676 | if (i > 0) { sum = *store; sum.PowEq(i); } |
---|
677 | ((GeneralMatrix&)*this).tDelete(); return sum; |
---|
678 | } |
---|
679 | |
---|
680 | LogAndSign BaseMatrix::LogDeterminant() const |
---|
681 | { |
---|
682 | REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate(); |
---|
683 | LogAndSign sum = gm->LogDeterminant(); return sum; |
---|
684 | } |
---|
685 | |
---|
686 | LogAndSign GeneralMatrix::LogDeterminant() const |
---|
687 | { |
---|
688 | REPORT |
---|
689 | Tracer tr("LogDeterminant"); |
---|
690 | if (nrows != ncols) Throw(NotSquareException(*this)); |
---|
691 | CroutMatrix C(*this); return C.LogDeterminant(); |
---|
692 | } |
---|
693 | |
---|
694 | LogAndSign CroutMatrix::LogDeterminant() const |
---|
695 | { |
---|
696 | REPORT |
---|
697 | if (sing) return 0.0; |
---|
698 | int i = nrows; int dd = i+1; LogAndSign sum; Real* s = store; |
---|
699 | if (i) for(;;) |
---|
700 | { |
---|
701 | sum *= *s; |
---|
702 | if (!(--i)) break; |
---|
703 | s += dd; |
---|
704 | } |
---|
705 | if (!d) sum.ChangeSign(); return sum; |
---|
706 | |
---|
707 | } |
---|
708 | |
---|
709 | Real BaseMatrix::Determinant() const |
---|
710 | { |
---|
711 | REPORT |
---|
712 | Tracer tr("Determinant"); |
---|
713 | REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate(); |
---|
714 | LogAndSign ld = gm->LogDeterminant(); |
---|
715 | return ld.Value(); |
---|
716 | } |
---|
717 | |
---|
718 | |
---|
719 | |
---|
720 | |
---|
721 | |
---|
722 | LinearEquationSolver::LinearEquationSolver(const BaseMatrix& bm) |
---|
723 | : gm( ( ((BaseMatrix&)bm).Evaluate() )->MakeSolver() ) |
---|
724 | { |
---|
725 | if (gm==&bm) { REPORT gm = gm->Image(); } |
---|
726 | // want a copy if *gm is actually bm |
---|
727 | else { REPORT gm->Protect(); } |
---|
728 | } |
---|
729 | |
---|
730 | |
---|
731 | #ifdef use_namespace |
---|
732 | } |
---|
733 | #endif |
---|
734 | |
---|