1 | // This is an example of a non-linear least squares fit. The example |
---|
2 | // is from "Nonlinear estimation" by Gavin Ross (Springer,1990), p 63. |
---|
3 | // There are better ways of doing the fit in this case so this |
---|
4 | // example is just an example. |
---|
5 | |
---|
6 | // The model is E(y) = a + b exp(-kx) and there are 6 data points. |
---|
7 | |
---|
8 | #define WANT_STREAM |
---|
9 | #define WANT_MATH |
---|
10 | #include "newmatnl.h" |
---|
11 | #include "newmatio.h" |
---|
12 | |
---|
13 | #ifdef use_namespace |
---|
14 | using namespace RBD_LIBRARIES; |
---|
15 | #endif |
---|
16 | |
---|
17 | |
---|
18 | // first define the class describing the predictor function |
---|
19 | |
---|
20 | class Model_3pe : public R1_Col_I_D |
---|
21 | { |
---|
22 | ColumnVector x_values; // the values of "x" |
---|
23 | RowVector deriv; // values of derivatives |
---|
24 | public: |
---|
25 | Model_3pe(const ColumnVector& X_Values) |
---|
26 | : x_values(X_Values) { deriv.ReSize(3); } |
---|
27 | // load X data |
---|
28 | Real operator()(int); |
---|
29 | bool IsValid() { return para(3)>0; } |
---|
30 | // require "k" > 0 |
---|
31 | ReturnMatrix Derivatives() { return deriv; } |
---|
32 | }; |
---|
33 | |
---|
34 | Real Model_3pe::operator()(int i) |
---|
35 | { |
---|
36 | Real a = para(1); Real b = para(2); Real k = para(3); |
---|
37 | Real xvi = x_values(i); |
---|
38 | Real e = exp(-k * xvi); |
---|
39 | deriv(1) = 1.0; // calculate derivatives |
---|
40 | deriv(2) = e; |
---|
41 | deriv(3) = - b * e * xvi; |
---|
42 | return a + b * e; // function value |
---|
43 | } |
---|
44 | |
---|
45 | int main() |
---|
46 | { |
---|
47 | { |
---|
48 | // Get the data |
---|
49 | ColumnVector X(6); |
---|
50 | ColumnVector Y(6); |
---|
51 | X << 1 << 2 << 3 << 4 << 6 << 8; |
---|
52 | Y << 3.2 << 7.9 << 11.1 << 14.5 << 16.7 << 18.3; |
---|
53 | |
---|
54 | |
---|
55 | // Do the fit |
---|
56 | Model_3pe model(X); // the model object |
---|
57 | NonLinearLeastSquares NLLS(model); // the non-linear least squares |
---|
58 | // object |
---|
59 | ColumnVector Para(3); // for the parameters |
---|
60 | Para << 9 << -6 << .5; // trial values of parameters |
---|
61 | cout << "Fitting parameters\n"; |
---|
62 | NLLS.Fit(Y,Para); // do the fit |
---|
63 | |
---|
64 | // Inspect the results |
---|
65 | ColumnVector SE; // for the standard errors |
---|
66 | NLLS.GetStandardErrors(SE); |
---|
67 | cout << "\n\nEstimates and standard errors\n" << |
---|
68 | setw(10) << setprecision(2) << (Para | SE) << endl; |
---|
69 | Real ResidualSD = sqrt(NLLS.ResidualVariance()); |
---|
70 | cout << "\nResidual s.d. = " << setw(10) << setprecision(2) << |
---|
71 | ResidualSD << endl; |
---|
72 | SymmetricMatrix Correlations; |
---|
73 | NLLS.GetCorrelations(Correlations); |
---|
74 | cout << "\nCorrelationMatrix\n" << |
---|
75 | setw(10) << setprecision(2) << Correlations << endl; |
---|
76 | ColumnVector Residuals; |
---|
77 | NLLS.GetResiduals(Residuals); |
---|
78 | DiagonalMatrix Hat; |
---|
79 | NLLS.GetHatDiagonal(Hat); |
---|
80 | cout << "\nX, Y, Residual, Hat\n" << setw(10) << setprecision(2) << |
---|
81 | (X | Y | Residuals | Hat.AsColumn()) << endl; |
---|
82 | // recover var/cov matrix |
---|
83 | SymmetricMatrix D; |
---|
84 | D << SE.AsDiagonal() * Correlations * SE.AsDiagonal(); |
---|
85 | cout << "\nVar/cov\n" << setw(14) << setprecision(4) << D << endl; |
---|
86 | } |
---|
87 | |
---|
88 | #ifdef DO_FREE_CHECK |
---|
89 | FreeCheck::Status(); |
---|
90 | #endif |
---|
91 | |
---|
92 | return 0; |
---|
93 | } |
---|