1 | |
---|
2 | //#define WANT_STREAM |
---|
3 | |
---|
4 | |
---|
5 | #include "include.h" |
---|
6 | |
---|
7 | #include "newmat.h" |
---|
8 | |
---|
9 | #include "tmt.h" |
---|
10 | |
---|
11 | #ifdef use_namespace |
---|
12 | using namespace NEWMAT; |
---|
13 | #endif |
---|
14 | |
---|
15 | |
---|
16 | /**************************** test program ******************************/ |
---|
17 | |
---|
18 | |
---|
19 | void trymat2() |
---|
20 | { |
---|
21 | // cout << "\nSecond test of Matrix package\n\n"; |
---|
22 | Tracer et("Second test of Matrix package"); |
---|
23 | Tracer::PrintTrace(); |
---|
24 | |
---|
25 | int i,j; |
---|
26 | |
---|
27 | Matrix M(3,5); |
---|
28 | for (i=1; i<=3; i++) for (j=1; j<=5; j++) M(i,j) = 100*i + j; |
---|
29 | Matrix X(8,10); |
---|
30 | for (i=1; i<=8; i++) for (j=1; j<=10; j++) X(i,j) = 1000*i + 10*j; |
---|
31 | Matrix Y = X; Matrix Z = X; |
---|
32 | { X.SubMatrix(2,4,3,7) << M; } |
---|
33 | for (i=1; i<=3; i++) for (j=1; j<=5; j++) Y(i+1,j+2) = 100*i + j; |
---|
34 | Print(Matrix(X-Y)); |
---|
35 | |
---|
36 | |
---|
37 | Real a[15]; Real* r = a; |
---|
38 | for (i=1; i<=3; i++) for (j=1; j<=5; j++) *r++ = 100*i + j; |
---|
39 | { Z.SubMatrix(2,4,3,7) << a; } |
---|
40 | Print(Matrix(Z-Y)); |
---|
41 | |
---|
42 | { M=33; X.SubMatrix(2,4,3,7) << M; } |
---|
43 | { Z.SubMatrix(2,4,3,7) = 33; } |
---|
44 | Print(Matrix(Z-X)); |
---|
45 | |
---|
46 | for (i=1; i<=8; i++) for (j=1; j<=10; j++) X(i,j) = 1000*i + 10*j; |
---|
47 | Y = X; |
---|
48 | UpperTriangularMatrix U(5); |
---|
49 | for (i=1; i<=5; i++) for (j=i; j<=5; j++) U(i,j) = 100*i + j; |
---|
50 | { X.SubMatrix(3,7,5,9) << U; } |
---|
51 | for (i=1; i<=5; i++) for (j=i; j<=5; j++) Y(i+2,j+4) = 100*i + j; |
---|
52 | for (i=1; i<=5; i++) for (j=1; j<i; j++) Y(i+2,j+4) = 0.0; |
---|
53 | Print(Matrix(X-Y)); |
---|
54 | for (i=1; i<=8; i++) for (j=1; j<=10; j++) X(i,j) = 1000*i + 10*j; |
---|
55 | Y = X; |
---|
56 | for (i=1; i<=5; i++) for (j=i; j<=5; j++) U(i,j) = 100*i + j; |
---|
57 | { X.SubMatrix(3,7,5,9).Inject(U); } |
---|
58 | for (i=1; i<=5; i++) for (j=i; j<=5; j++) Y(i+2,j+4) = 100*i + j; |
---|
59 | Print(Matrix(X-Y)); |
---|
60 | |
---|
61 | |
---|
62 | // test growing and shrinking a vector |
---|
63 | { |
---|
64 | ColumnVector V(100); |
---|
65 | for (i=1;i<=100;i++) V(i) = i*i+i; |
---|
66 | V = V.Rows(1,50); // to get first 50 vlaues. |
---|
67 | |
---|
68 | { |
---|
69 | V.Release(); ColumnVector VX=V; |
---|
70 | V.ReSize(100); V = 0.0; V.Rows(1,50)=VX; |
---|
71 | } // V now length 100 |
---|
72 | |
---|
73 | M=V; M=100; // to make sure V will hold its values |
---|
74 | for (i=1;i<=50;i++) V(i) -= i*i+i; |
---|
75 | Print(V); |
---|
76 | |
---|
77 | |
---|
78 | // test redimensioning vectors with two dimensions given |
---|
79 | ColumnVector CV1(10); CV1 = 10; |
---|
80 | ColumnVector CV2(5); CV2.ReSize(10,1); CV2 = 10; |
---|
81 | V = CV1-CV2; Print(V); |
---|
82 | |
---|
83 | RowVector RV1(20); RV1 = 100; |
---|
84 | RowVector RV2; RV2.ReSize(1,20); RV2 = 100; |
---|
85 | V = (RV1-RV2).t(); Print(V); |
---|
86 | |
---|
87 | X.ReSize(4,7); |
---|
88 | for (i=1; i<=4; i++) for (j=1; j<=7; j++) X(i,j) = 1000*i + 10*j; |
---|
89 | Y = 10.5 * X; |
---|
90 | Z = 7.25 - Y; |
---|
91 | M = Z + X * 10.5 - 7.25; |
---|
92 | Print(M); |
---|
93 | Y = 2.5 * X; |
---|
94 | Z = 9.25 + Y; |
---|
95 | M = Z - X * 2.5 - 9.25; |
---|
96 | Print(M); |
---|
97 | U.ReSize(8); |
---|
98 | for (i=1; i<=8; i++) for (j=i; j<=8; j++) U(i,j) = 100*i + j; |
---|
99 | Y = 100 - U; |
---|
100 | M = Y + U - 100; |
---|
101 | Print(M); |
---|
102 | } |
---|
103 | |
---|
104 | { |
---|
105 | SymmetricMatrix S,T; |
---|
106 | |
---|
107 | S << (U + U.t()); |
---|
108 | T = 100 - S; M = T + S - 100; Print(M); |
---|
109 | T = 100 - 2 * S; M = T + S * 2 - 100; Print(M); |
---|
110 | X = 100 - 2 * S; M = X + S * 2 - 100; Print(M); |
---|
111 | T = S; T = 100 - T; M = T + S - 100; Print(M); |
---|
112 | } |
---|
113 | |
---|
114 | // test new |
---|
115 | { |
---|
116 | ColumnVector CV1; RowVector RV1; |
---|
117 | Matrix* MX; MX = new Matrix; if (!MX) Throw(Bad_alloc("New fails ")); |
---|
118 | MX->ReSize(10,20); |
---|
119 | for (i = 1; i <= 10; i++) for (j = 1; j <= 20; j++) |
---|
120 | (*MX)(i,j) = 100 * i + j; |
---|
121 | ColumnVector* CV = new ColumnVector(10); |
---|
122 | if (!CV) Throw(Bad_alloc("New fails ")); |
---|
123 | *CV << 1 << 2 << 3 << 4 << 5 << 6 << 7 << 8 << 9 << 10; |
---|
124 | RowVector* RV = new RowVector(CV->t() | (*CV + 10).t()); |
---|
125 | if (!RV) Throw(Bad_alloc("New fails ")); |
---|
126 | CV1 = ColumnVector(10); CV1 = 1; RV1 = RowVector(20); RV1 = 1; |
---|
127 | *MX -= 100 * *CV * RV1 + CV1 * *RV; |
---|
128 | Print(*MX); |
---|
129 | delete MX; delete CV; delete RV; |
---|
130 | } |
---|
131 | |
---|
132 | |
---|
133 | // test copying of vectors and matrices with no elements |
---|
134 | { |
---|
135 | ColumnVector dims(16); |
---|
136 | Matrix M1; Matrix M2 = M1; Print(M2); |
---|
137 | dims(1) = M2.Nrows(); dims(2) = M2.Ncols(); |
---|
138 | dims(3) = (Real)(unsigned long)M2.Store(); dims(4) = M2.Storage(); |
---|
139 | M2 = M1; |
---|
140 | dims(5) = M2.Nrows(); dims(6) = M2.Ncols(); |
---|
141 | dims(7) = (Real)(unsigned long)M2.Store(); dims(8) = M2.Storage(); |
---|
142 | M2.ReSize(10,20); M2.CleanUp(); |
---|
143 | dims(9) = M2.Nrows(); dims(10) = M2.Ncols(); |
---|
144 | dims(11) = (Real)(unsigned long)M2.Store(); dims(12) = M2.Storage(); |
---|
145 | M2.ReSize(20,10); M2.ReSize(0,0); |
---|
146 | dims(13) = M2.Nrows(); dims(14) = M2.Ncols(); |
---|
147 | dims(15) = (Real)(unsigned long)M2.Store(); dims(16) = M2.Storage(); |
---|
148 | Print(dims); |
---|
149 | } |
---|
150 | |
---|
151 | { |
---|
152 | ColumnVector dims(16); |
---|
153 | ColumnVector M1; ColumnVector M2 = M1; Print(M2); |
---|
154 | dims(1) = M2.Nrows(); dims(2) = M2.Ncols()-1; |
---|
155 | dims(3) = (Real)(unsigned long)M2.Store(); dims(4) = M2.Storage(); |
---|
156 | M2 = M1; |
---|
157 | dims(5) = M2.Nrows(); dims(6) = M2.Ncols()-1; |
---|
158 | dims(7) = (Real)(unsigned long)M2.Store(); dims(8) = M2.Storage(); |
---|
159 | M2.ReSize(10); M2.CleanUp(); |
---|
160 | dims(9) = M2.Nrows(); dims(10) = M2.Ncols()-1; |
---|
161 | dims(11) = (Real)(unsigned long)M2.Store(); dims(12) = M2.Storage(); |
---|
162 | M2.ReSize(10); M2.ReSize(0); |
---|
163 | dims(13) = M2.Nrows(); dims(14) = M2.Ncols()-1; |
---|
164 | dims(15) = (Real)(unsigned long)M2.Store(); dims(16) = M2.Storage(); |
---|
165 | Print(dims); |
---|
166 | } |
---|
167 | |
---|
168 | { |
---|
169 | ColumnVector dims(16); |
---|
170 | RowVector M1; RowVector M2 = M1; Print(M2); |
---|
171 | dims(1) = M2.Nrows()-1; dims(2) = M2.Ncols(); |
---|
172 | dims(3) = (Real)(unsigned long)M2.Store(); dims(4) = M2.Storage(); |
---|
173 | M2 = M1; |
---|
174 | dims(5) = M2.Nrows()-1; dims(6) = M2.Ncols(); |
---|
175 | dims(7) = (Real)(unsigned long)M2.Store(); dims(8) = M2.Storage(); |
---|
176 | M2.ReSize(10); M2.CleanUp(); |
---|
177 | dims(9) = M2.Nrows()-1; dims(10) = M2.Ncols(); |
---|
178 | dims(11) = (Real)(unsigned long)M2.Store(); dims(12) = M2.Storage(); |
---|
179 | M2.ReSize(10); M2.ReSize(0); |
---|
180 | dims(13) = M2.Nrows()-1; dims(14) = M2.Ncols(); |
---|
181 | dims(15) = (Real)(unsigned long)M2.Store(); dims(16) = M2.Storage(); |
---|
182 | Print(dims); |
---|
183 | } |
---|
184 | |
---|
185 | // test identity matrix |
---|
186 | { |
---|
187 | Matrix M; |
---|
188 | IdentityMatrix I(10); DiagonalMatrix D(10); D = 1; |
---|
189 | M = I; M -= D; Print(M); |
---|
190 | D -= I; Print(D); |
---|
191 | ColumnVector X(8); |
---|
192 | D = 1; |
---|
193 | X(1) = Sum(D) - Sum(I); |
---|
194 | X(2) = SumAbsoluteValue(D) - SumAbsoluteValue(I); |
---|
195 | X(3) = SumSquare(D) - SumSquare(I); |
---|
196 | X(4) = Trace(D) - Trace(I); |
---|
197 | X(5) = Maximum(D) - Maximum(I); |
---|
198 | X(6) = Minimum(D) - Minimum(I); |
---|
199 | X(7) = LogDeterminant(D).LogValue() - LogDeterminant(I).LogValue(); |
---|
200 | X(8) = LogDeterminant(D).Sign() - LogDeterminant(I).Sign(); |
---|
201 | Clean(X,0.00000001); Print(X); |
---|
202 | |
---|
203 | for (i = 1; i <= 10; i++) for (j = 1; j <= 10; j++) |
---|
204 | M(i,j) = 100 * i + j; |
---|
205 | Matrix N; |
---|
206 | N = M * I - M; Print(N); |
---|
207 | N = I * M - M; Print(N); |
---|
208 | N = M * I.i() - M; Print(N); |
---|
209 | N = I.i() * M - M; Print(N); |
---|
210 | N = I.i(); N -= I; Print(N); |
---|
211 | N = I.t(); N -= I; Print(N); |
---|
212 | N = I.t(); N += (-I); Print(N); // <---------------- |
---|
213 | D = I; N = D; D = 1; N -= D; Print(N); |
---|
214 | N = I; D = 1; N -= D; Print(N); |
---|
215 | N = M + 2 * IdentityMatrix(10); N -= (M + 2 * D); Print(N); |
---|
216 | |
---|
217 | I *= 4; |
---|
218 | |
---|
219 | D = 4; |
---|
220 | |
---|
221 | X.ReSize(14); |
---|
222 | X(1) = Sum(D) - Sum(I); |
---|
223 | X(2) = SumAbsoluteValue(D) - SumAbsoluteValue(I); |
---|
224 | X(3) = SumSquare(D) - SumSquare(I); |
---|
225 | X(4) = Trace(D) - Trace(I); |
---|
226 | X(5) = Maximum(D) - Maximum(I); |
---|
227 | X(6) = Minimum(D) - Minimum(I); |
---|
228 | X(7) = LogDeterminant(D).LogValue() - LogDeterminant(I).LogValue(); // <-- |
---|
229 | X(8) = LogDeterminant(D).Sign() - LogDeterminant(I).Sign(); |
---|
230 | int i,j; |
---|
231 | X(9) = I.Maximum1(i) - 4; X(10) = i-1; |
---|
232 | X(11) = I.Maximum2(i,j) - 4; X(12) = i-10; X(13) = j-10; |
---|
233 | X(14) = I.Nrows() - 10; |
---|
234 | Clean(X,0.00000001); Print(X); |
---|
235 | |
---|
236 | |
---|
237 | N = D.i(); |
---|
238 | N += I / (-16); |
---|
239 | Print(N); |
---|
240 | N = M * I - 4 * M; Print(N); |
---|
241 | N = I * M - 4 * M; Print(N); |
---|
242 | N = M * I.i() - 0.25 * M; Print(N); |
---|
243 | N = I.i() * M - 0.25 * M; Print(N); |
---|
244 | N = I.i(); N -= I * 0.0625; Print(N); |
---|
245 | N = I.i(); N = N - 0.0625 * I; Print(N); |
---|
246 | N = I.t(); N -= I; Print(N); |
---|
247 | D = I * 2; N = D; D = 1; N -= 8 * D; Print(N); |
---|
248 | N = I * 2; N -= 8 * D; Print(N); |
---|
249 | N = 0.5 * I + M; N -= M; N -= 2.0 * D; Print(N); |
---|
250 | |
---|
251 | IdentityMatrix J(10); J = 8; |
---|
252 | D = 4; |
---|
253 | DiagonalMatrix E(10); E = 8; |
---|
254 | N = (I + J) - (D + E); Print(N); |
---|
255 | N = (5*I + 3*J) - (5*D + 3*E); Print(N); |
---|
256 | N = (-I + J) - (-D + E); Print(N); |
---|
257 | N = (I - J) - (D - E); Print(N); |
---|
258 | N = (I | J) - (D | E); Print(N); |
---|
259 | N = (I & J) - (D & E); Print(N); |
---|
260 | N = SP(I,J) - SP(D,E); Print(N); |
---|
261 | N = D.SubMatrix(2,5,3,8) - I.SubMatrix(2,5,3,8); Print(N); |
---|
262 | |
---|
263 | N = M; N.Inject(I); D << M; N -= (M + I); N += D; Print(N); |
---|
264 | D = 4; |
---|
265 | |
---|
266 | IdentityMatrix K = I.i()*7 - J.t()/4; |
---|
267 | N = D.i() * 7 - E / 4 - K; Print(N); |
---|
268 | K = I * J; N = K - D * E; Print(N); |
---|
269 | N = I * J; N -= D * E; Print(N); |
---|
270 | K = 5*I - 3*J; |
---|
271 | N = K - (5*D - 3*E); Print(N); |
---|
272 | K = I.i(); N = K - 0.0625 * I; Print(N); |
---|
273 | K = I.t(); N = K - I; Print(N); |
---|
274 | |
---|
275 | |
---|
276 | K.ReSize(20); D.ReSize(20); D = 1; |
---|
277 | D -= K; Print(D); |
---|
278 | |
---|
279 | I.ReSize(3); J.ReSize(3); K = I * J; N = K - I; Print(N); |
---|
280 | K << D; N = K - D; Print(N); |
---|
281 | |
---|
282 | |
---|
283 | } |
---|
284 | |
---|
285 | |
---|
286 | // cout << "\nEnd of second test\n"; |
---|
287 | } |
---|