Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/orxonox/trunk/src/lib/newmat/tmta.cpp @ 4574

Last change on this file since 4574 was 4565, checked in by patrick, 19 years ago

orxonox/trunk: added the newmat library to the project. needs some translation in directory, temp under util/newmat. is needed by the collision detection engine to perform lin alg operations such as eigenvector decomposition. perhaps we will make our own library to do that later.

File size: 3.6 KB
Line 
1
2//#define WANT_STREAM
3
4
5#include "include.h"
6
7#include "newmatap.h"
8
9#include "tmt.h"
10
11#ifdef use_namespace
12using namespace NEWMAT;
13#endif
14
15
16/**************************** test program ******************************/
17
18
19static void process(const GeneralMatrix& A,
20   const ColumnVector& X1, const ColumnVector& X2)
21{
22      Matrix B = A;
23      LinearEquationSolver L(A);
24      Matrix Y(4,2);
25      Y.Column(1) << L.i() * X1; Y.Column(2) << L.i() * X2;
26      Matrix Z(4,2); Z.Column(1) << X1; Z.Column(2) << X2;
27      Z = B * Y - Z; Clean(Z,0.00000001); Print(Z);
28}
29
30
31
32void trymata()
33{
34//   cout << "\nTenth test of Matrix package\n";
35   Tracer et("Tenth test of Matrix package");
36   Tracer::PrintTrace();
37   int i; int j;
38   UpperTriangularMatrix U(8);
39   for (i=1;i<=8;i++) for (j=i;j<=8;j++) U(i,j)=i+j*j+5;
40   Matrix X(8,6);
41   for (i=1;i<=8;i++) for (j=1;j<=6;j++) X(i,j)=i*j+1.0;
42   Matrix Y = U.i()*X; Matrix MU=U;
43   Y=Y-MU.i()*X; Clean(Y,0.00000001); Print(Y);
44   Y = U.t().i()*X; Y=Y-MU.t().i()*X; Clean(Y,0.00000001); Print(Y);
45   UpperTriangularMatrix UX(8);
46   for (i=1;i<=8;i++) for (j=i;j<=8;j++) UX(i,j)=i+j+1;
47   UX(4,4)=0; UX(4,5)=0;
48   UpperTriangularMatrix UY = U.i() * UX;
49   { X=UX; MU=U; Y=UY-MU.i()*X; Clean(Y,0.000000001); Print(Y); }
50   LowerTriangularMatrix LY = U.t().i() * UX.t();
51   { Y=LY-MU.i().t()*X.t(); Clean(Y,0.000000001); Print(Y); }
52   DiagonalMatrix D(8); for (i=1;i<=8;i++) D(i,i)=i+1;
53   { X=D.i()*MU; }
54   { UY=U; UY=D.i()*UY; Y=UY-X; Clean(Y,0.00000001); Print(Y); }
55   { UY=D.i()*U; Y=UY-X; Clean(Y,0.00000001); Print(Y); }
56//   X=MU.t();
57//   LY=D.i()*U.t(); Y=D*LY-X; Clean(Y,0.00000001); Print(Y);
58//   LowerTriangularMatrix L=U.t();
59//   LY=D.i()*L; Y=D*LY-X; Clean(Y,0.00000001); Print(Y);
60   U.ReSize(8);
61   for (i=1;i<=8;i++) for (j=i;j<=8;j++) U(i,j)=i+j*j+5;
62   MU = U;
63   MU = U.i() - MU.i(); Clean(MU,0.00000001); Print(MU);
64   MU = U.t().i() - U.i().t(); Clean(MU,0.00000001); Print(MU);
65
66   // test LINEQ
67   {
68      ColumnVector X1(4), X2(4);
69      X1(1)=1; X1(2)=2; X1(3)=3; X1(4)=4;
70      X2(1)=1; X2(2)=10; X2(3)=100; X2(4)=1000;
71
72
73      Matrix A(4,4);
74      A(1,1)=1; A(1,2)=3; A(1,3)=0; A(1,4)=0;
75      A(2,1)=3; A(2,2)=2; A(2,3)=5; A(2,4)=0;
76      A(3,1)=0; A(3,2)=5; A(3,3)=4; A(3,4)=1;
77      A(4,1)=0; A(4,2)=0; A(4,3)=1; A(4,4)=3;
78      process(A,X1,X2);
79
80      BandMatrix B(4,1,1);  B.Inject(A);
81      process(B,X1,X2);
82
83      UpperTriangularMatrix U(4);
84      U(1,1)=1; U(1,2)=2; U(1,3)=3; U(1,4)=4;
85                U(2,2)=8; U(2,3)=7; U(2,4)=6;
86                          U(3,3)=2; U(3,4)=7;
87                                    U(4,4)=1;
88      process(U,X1,X2);
89
90      // check rowwise load
91      UpperTriangularMatrix U1(4);
92      U1.Row(1) << 1 << 2 << 3 << 4;
93      U1.Row(2)      << 8 << 7 << 6;
94      U1.Row(3)           << 2 << 7;
95      U1.Row(4)                << 1;
96
97      U1 -= U;
98
99      Print(U1);
100
101      LowerTriangularMatrix L = U.t();
102      process(L,X1,X2);
103   }
104
105   // test inversion of poorly conditioned matrix
106   // a user complained this didn't work under OS9
107   {
108      Matrix M(4,4);
109
110      M <<  8.613057e+00 <<  8.693985e+00 << -2.322050e-01  << 0.000000e+00
111        <<  8.693985e+00 <<  8.793868e+00 << -2.346310e-01  << 0.000000e+00
112        << -2.322050e-01 << -2.346310e-01 <<  6.264000e-03  << 0.000000e+00
113        <<  0.000000e+00 <<  0.000000e+00 <<  0.000000e+00  << 3.282806e+03 ;
114      Matrix MI = M.i();
115      DiagonalMatrix I(4); I = 1;
116      Matrix Diff = MI *  M - I;
117      Clean(Diff,0.00000001); Print(Diff);
118      // Alternatively do Cholesky
119      SymmetricMatrix SM; SM << M;
120      LowerTriangularMatrix LT = Cholesky(SM).i();
121      MI = LT.t() * LT; Diff = MI *  M - I;
122      Clean(Diff,0.00000001); Print(Diff);
123   }
124
125//   cout << "\nEnd of tenth test\n";
126}
Note: See TracBrowser for help on using the repository browser.