1 | |
---|
2 | //#define WANT_STREAM |
---|
3 | |
---|
4 | |
---|
5 | #include "include.h" |
---|
6 | #include "newmat.h" |
---|
7 | |
---|
8 | #include "tmt.h" |
---|
9 | |
---|
10 | #ifdef use_namespace |
---|
11 | using namespace NEWMAT; |
---|
12 | #endif |
---|
13 | |
---|
14 | |
---|
15 | |
---|
16 | |
---|
17 | void trymatc() |
---|
18 | { |
---|
19 | // cout << "\nTwelfth test of Matrix package\n"; |
---|
20 | Tracer et("Twelfth test of Matrix package"); |
---|
21 | Tracer::PrintTrace(); |
---|
22 | DiagonalMatrix D(15); D=1.5; |
---|
23 | Matrix A(15,15); |
---|
24 | int i,j; |
---|
25 | for (i=1;i<=15;i++) for (j=1;j<=15;j++) A(i,j)=i*i+j-150; |
---|
26 | { A = A + D; } |
---|
27 | ColumnVector B(15); |
---|
28 | for (i=1;i<=15;i++) B(i)=i+i*i-150.0; |
---|
29 | { |
---|
30 | Tracer et1("Stage 1"); |
---|
31 | ColumnVector B1=B; |
---|
32 | B=(A*2.0).i() * B1; |
---|
33 | Matrix X = A*B-B1/2.0; |
---|
34 | Clean(X, 0.000000001); Print(X); |
---|
35 | A.ReSize(3,5); |
---|
36 | for (i=1; i<=3; i++) for (j=1; j<=5; j++) A(i,j) = i+100*j; |
---|
37 | |
---|
38 | B = A.AsColumn()+10000; |
---|
39 | RowVector R = (A+10000).AsColumn().t(); |
---|
40 | Print( RowVector(R-B.t()) ); |
---|
41 | } |
---|
42 | |
---|
43 | { |
---|
44 | Tracer et1("Stage 2"); |
---|
45 | B = A.AsColumn()+10000; |
---|
46 | Matrix XR = (A+10000).AsMatrix(15,1).t(); |
---|
47 | Print( RowVector(XR-B.t()) ); |
---|
48 | } |
---|
49 | |
---|
50 | { |
---|
51 | Tracer et1("Stage 3"); |
---|
52 | B = (A.AsMatrix(15,1)+A.AsColumn())/2.0+10000; |
---|
53 | Matrix MR = (A+10000).AsColumn().t(); |
---|
54 | Print( RowVector(MR-B.t()) ); |
---|
55 | |
---|
56 | B = (A.AsMatrix(15,1)+A.AsColumn())/2.0; |
---|
57 | MR = A.AsColumn().t(); |
---|
58 | Print( RowVector(MR-B.t()) ); |
---|
59 | } |
---|
60 | |
---|
61 | { |
---|
62 | Tracer et1("Stage 4"); |
---|
63 | B = (A.AsMatrix(15,1)+A.AsColumn())/2.0; |
---|
64 | RowVector R = A.AsColumn().t(); |
---|
65 | Print( RowVector(R-B.t()) ); |
---|
66 | } |
---|
67 | |
---|
68 | { |
---|
69 | Tracer et1("Stage 5"); |
---|
70 | RowVector R = (A.AsColumn()-5000).t(); |
---|
71 | B = ((R.t()+10000) - A.AsColumn())-5000; |
---|
72 | Print( RowVector(B.t()) ); |
---|
73 | } |
---|
74 | |
---|
75 | { |
---|
76 | Tracer et1("Stage 6"); |
---|
77 | B = A.AsColumn(); ColumnVector B1 = (A+10000).AsColumn() - 10000; |
---|
78 | Print(ColumnVector(B1-B)); |
---|
79 | } |
---|
80 | |
---|
81 | { |
---|
82 | Tracer et1("Stage 7"); |
---|
83 | Matrix X = B.AsMatrix(3,5); Print(Matrix(X-A)); |
---|
84 | for (i=1; i<=3; i++) for (j=1; j<=5; j++) B(5*(i-1)+j) -= i+100*j; |
---|
85 | Print(B); |
---|
86 | } |
---|
87 | |
---|
88 | { |
---|
89 | Tracer et1("Stage 8"); |
---|
90 | A.ReSize(7,7); D.ReSize(7); |
---|
91 | for (i=1; i<=7; i++) for (j=1; j<=7; j++) A(i,j) = i*j*j; |
---|
92 | for (i=1; i<=7; i++) D(i,i) = i; |
---|
93 | UpperTriangularMatrix U; U << A; |
---|
94 | Matrix X = A; for (i=1; i<=7; i++) X(i,i) = i; |
---|
95 | A.Inject(D); Print(Matrix(X-A)); |
---|
96 | X = U; U.Inject(D); A = U; for (i=1; i<=7; i++) X(i,i) = i; |
---|
97 | Print(Matrix(X-A)); |
---|
98 | } |
---|
99 | |
---|
100 | { |
---|
101 | Tracer et1("Stage 9"); |
---|
102 | A.ReSize(7,5); |
---|
103 | for (i=1; i<=7; i++) for (j=1; j<=5; j++) A(i,j) = i+100*j; |
---|
104 | Matrix Y = A; Y = Y - ((const Matrix&)A); Print(Y); |
---|
105 | Matrix X = A; // X.Release(); |
---|
106 | Y = A; Y = ((const Matrix&)X) - A; Print(Y); Y = 0.0; |
---|
107 | Y = ((const Matrix&)X) - ((const Matrix&)A); Print(Y); |
---|
108 | } |
---|
109 | |
---|
110 | { |
---|
111 | Tracer et1("Stage 10"); |
---|
112 | // some tests on submatrices |
---|
113 | UpperTriangularMatrix U(20); |
---|
114 | for (i=1; i<=20; i++) for (j=i; j<=20; j++) U(i,j)=100 * i + j; |
---|
115 | UpperTriangularMatrix V = U.SymSubMatrix(1,5); |
---|
116 | UpperTriangularMatrix U1 = U; |
---|
117 | U1.SubMatrix(4,8,5,9) /= 2; |
---|
118 | U1.SubMatrix(4,8,5,9) += 388 * V; |
---|
119 | U1.SubMatrix(4,8,5,9) *= 2; |
---|
120 | U1.SubMatrix(4,8,5,9) += V; |
---|
121 | U1 -= U; UpperTriangularMatrix U2 = U1; |
---|
122 | U1 << U1.SubMatrix(4,8,5,9); |
---|
123 | U2.SubMatrix(4,8,5,9) -= U1; Print(U2); |
---|
124 | U1 -= (777*V); Print(U1); |
---|
125 | |
---|
126 | U1 = U; U1.SubMatrix(4,8,5,9) -= U.SymSubMatrix(1,5); |
---|
127 | U1 -= U; U2 = U1; U1 << U1.SubMatrix(4,8,5,9); |
---|
128 | U2.SubMatrix(4,8,5,9) -= U1; Print(U2); |
---|
129 | U1 += V; Print(U1); |
---|
130 | |
---|
131 | U1 = U; |
---|
132 | U1.SubMatrix(3,10,15,19) += 29; |
---|
133 | U1 -= U; |
---|
134 | Matrix X = U1.SubMatrix(3,10,15,19); X -= 29; Print(X); |
---|
135 | U1.SubMatrix(3,10,15,19) *= 0; Print(U1); |
---|
136 | |
---|
137 | LowerTriangularMatrix L = U.t(); |
---|
138 | LowerTriangularMatrix M = L.SymSubMatrix(1,5); |
---|
139 | LowerTriangularMatrix L1 = L; |
---|
140 | L1.SubMatrix(5,9,4,8) /= 2; |
---|
141 | L1.SubMatrix(5,9,4,8) += 388 * M; |
---|
142 | L1.SubMatrix(5,9,4,8) *= 2; |
---|
143 | L1.SubMatrix(5,9,4,8) += M; |
---|
144 | L1 -= L; LowerTriangularMatrix L2 = L1; |
---|
145 | L1 << L1.SubMatrix(5,9,4,8); |
---|
146 | L2.SubMatrix(5,9,4,8) -= L1; Print(L2); |
---|
147 | L1 -= (777*M); Print(L1); |
---|
148 | |
---|
149 | L1 = L; L1.SubMatrix(5,9,4,8) -= L.SymSubMatrix(1,5); |
---|
150 | L1 -= L; L2 =L1; L1 << L1.SubMatrix(5,9,4,8); |
---|
151 | L2.SubMatrix(5,9,4,8) -= L1; Print(L2); |
---|
152 | L1 += M; Print(L1); |
---|
153 | |
---|
154 | L1 = L; |
---|
155 | L1.SubMatrix(15,19,3,10) -= 29; |
---|
156 | L1 -= L; |
---|
157 | X = L1.SubMatrix(15,19,3,10); X += 29; Print(X); |
---|
158 | L1.SubMatrix(15,19,3,10) *= 0; Print(L1); |
---|
159 | } |
---|
160 | |
---|
161 | { |
---|
162 | Tracer et1("Stage 11"); |
---|
163 | // more tests on submatrices |
---|
164 | Matrix M(20,30); |
---|
165 | for (i=1; i<=20; i++) for (j=1; j<=30; j++) M(i,j)=100 * i + j; |
---|
166 | Matrix M1 = M; |
---|
167 | |
---|
168 | for (j=1; j<=30; j++) |
---|
169 | { ColumnVector CV = 3 * M1.Column(j); M.Column(j) += CV; } |
---|
170 | for (i=1; i<=20; i++) |
---|
171 | { RowVector RV = 5 * M1.Row(i); M.Row(i) -= RV; } |
---|
172 | |
---|
173 | M += M1; Print(M); |
---|
174 | |
---|
175 | } |
---|
176 | |
---|
177 | { |
---|
178 | Tracer et1("Stage 12"); |
---|
179 | // more tests on Release |
---|
180 | Matrix M(20,30); |
---|
181 | for (i=1; i<=20; i++) for (j=1; j<=30; j++) M(i,j)=100 * i + j; |
---|
182 | Matrix M1 = M; |
---|
183 | M.Release(); |
---|
184 | Matrix M2 = M; |
---|
185 | Matrix X = M; Print(X); |
---|
186 | X = M1 - M2; Print(X); |
---|
187 | |
---|
188 | #ifndef DONT_DO_NRIC |
---|
189 | nricMatrix N = M1; |
---|
190 | nricMatrix N1 = N; |
---|
191 | N.Release(); |
---|
192 | nricMatrix N2 = N; |
---|
193 | nricMatrix Y = N; Print(Y); |
---|
194 | Y = N1 - N2; Print(Y); |
---|
195 | #endif |
---|
196 | |
---|
197 | } |
---|
198 | |
---|
199 | // cout << "\nEnd of twelfth test\n"; |
---|
200 | } |
---|