1 | |
---|
2 | //#define WANT_STREAM |
---|
3 | |
---|
4 | #include "include.h" |
---|
5 | #include "newmatap.h" |
---|
6 | |
---|
7 | #include "tmt.h" |
---|
8 | |
---|
9 | #ifdef use_namespace |
---|
10 | using namespace NEWMAT; |
---|
11 | #endif |
---|
12 | |
---|
13 | ReturnMatrix Inverter(const CroutMatrix& X) |
---|
14 | { |
---|
15 | Matrix Y = X.i(); |
---|
16 | Y.Release(); |
---|
17 | return Y.ForReturn(); |
---|
18 | } |
---|
19 | |
---|
20 | |
---|
21 | void trymatd() |
---|
22 | { |
---|
23 | Tracer et("Thirteenth test of Matrix package"); |
---|
24 | Tracer::PrintTrace(); |
---|
25 | Matrix X(5,20); |
---|
26 | int i,j; |
---|
27 | for (j=1;j<=20;j++) X(1,j) = j+1; |
---|
28 | for (i=2;i<=5;i++) for (j=1;j<=20; j++) X(i,j) = (long)X(i-1,j) * j % 1001; |
---|
29 | SymmetricMatrix S; S << X * X.t(); |
---|
30 | Matrix SM = X * X.t() - S; |
---|
31 | Print(SM); |
---|
32 | LowerTriangularMatrix L = Cholesky(S); |
---|
33 | Matrix Diff = L*L.t()-S; Clean(Diff, 0.000000001); |
---|
34 | Print(Diff); |
---|
35 | { |
---|
36 | Tracer et1("Stage 1"); |
---|
37 | LowerTriangularMatrix L1(5); |
---|
38 | Matrix Xt = X.t(); Matrix Xt2 = Xt; |
---|
39 | QRZT(X,L1); |
---|
40 | Diff = L - L1; Clean(Diff,0.000000001); Print(Diff); |
---|
41 | UpperTriangularMatrix Ut(5); |
---|
42 | QRZ(Xt,Ut); |
---|
43 | Diff = L - Ut.t(); Clean(Diff,0.000000001); Print(Diff); |
---|
44 | Matrix Y(3,20); |
---|
45 | for (j=1;j<=20;j++) Y(1,j) = 22-j; |
---|
46 | for (i=2;i<=3;i++) for (j=1;j<=20; j++) |
---|
47 | Y(i,j) = (long)Y(i-1,j) * j % 101; |
---|
48 | Matrix Yt = Y.t(); Matrix M,Mt; Matrix Y2=Y; |
---|
49 | QRZT(X,Y,M); QRZ(Xt,Yt,Mt); |
---|
50 | Diff = Xt - X.t(); Clean(Diff,0.000000001); Print(Diff); |
---|
51 | Diff = Yt - Y.t(); Clean(Diff,0.000000001); Print(Diff); |
---|
52 | Diff = Mt - M.t(); Clean(Diff,0.000000001); Print(Diff); |
---|
53 | Diff = Y2 * Xt2 * S.i() - M * L.i(); |
---|
54 | Clean(Diff,0.000000001); Print(Diff); |
---|
55 | } |
---|
56 | |
---|
57 | ColumnVector C1(5); |
---|
58 | { |
---|
59 | Tracer et1("Stage 2"); |
---|
60 | X.ReSize(5,5); |
---|
61 | for (j=1;j<=5;j++) X(1,j) = j+1; |
---|
62 | for (i=2;i<=5;i++) for (j=1;j<=5; j++) |
---|
63 | X(i,j) = (long)X(i-1,j) * j % 1001; |
---|
64 | for (i=1;i<=5;i++) C1(i) = i*i; |
---|
65 | CroutMatrix A = X; |
---|
66 | ColumnVector C2 = A.i() * C1; C1 = X.i() * C1; |
---|
67 | X = C1 - C2; Clean(X,0.000000001); Print(X); |
---|
68 | } |
---|
69 | |
---|
70 | { |
---|
71 | Tracer et1("Stage 3"); |
---|
72 | X.ReSize(7,7); |
---|
73 | for (j=1;j<=7;j++) X(1,j) = j+1; |
---|
74 | for (i=2;i<=7;i++) for (j=1;j<=7; j++) |
---|
75 | X(i,j) = (long)X(i-1,j) * j % 1001; |
---|
76 | C1.ReSize(7); |
---|
77 | for (i=1;i<=7;i++) C1(i) = i*i; |
---|
78 | RowVector R1 = C1.t(); |
---|
79 | Diff = R1 * X.i() - ( X.t().i() * R1.t() ).t(); Clean(Diff,0.000000001); |
---|
80 | Print(Diff); |
---|
81 | } |
---|
82 | |
---|
83 | { |
---|
84 | Tracer et1("Stage 4"); |
---|
85 | X.ReSize(5,5); |
---|
86 | for (j=1;j<=5;j++) X(1,j) = j+1; |
---|
87 | for (i=2;i<=5;i++) for (j=1;j<=5; j++) |
---|
88 | X(i,j) = (long)X(i-1,j) * j % 1001; |
---|
89 | C1.ReSize(5); |
---|
90 | for (i=1;i<=5;i++) C1(i) = i*i; |
---|
91 | CroutMatrix A1 = X*X; |
---|
92 | ColumnVector C2 = A1.i() * C1; C1 = X.i() * C1; C1 = X.i() * C1; |
---|
93 | X = C1 - C2; Clean(X,0.000000001); Print(X); |
---|
94 | } |
---|
95 | |
---|
96 | |
---|
97 | { |
---|
98 | Tracer et1("Stage 5"); |
---|
99 | int n = 40; |
---|
100 | SymmetricBandMatrix B(n,2); B = 0.0; |
---|
101 | for (i=1; i<=n; i++) |
---|
102 | { |
---|
103 | B(i,i) = 6; |
---|
104 | if (i<=n-1) B(i,i+1) = -4; |
---|
105 | if (i<=n-2) B(i,i+2) = 1; |
---|
106 | } |
---|
107 | B(1,1) = 5; B(n,n) = 5; |
---|
108 | SymmetricMatrix A = B; |
---|
109 | ColumnVector X(n); |
---|
110 | X(1) = 429; |
---|
111 | for (i=2;i<=n;i++) X(i) = (long)X(i-1) * 31 % 1001; |
---|
112 | X = X / 100000L; |
---|
113 | // the matrix B is rather ill-conditioned so the difficulty is getting |
---|
114 | // good agreement (we have chosen X very small) may not be surprising; |
---|
115 | // maximum element size in B.i() is around 1400 |
---|
116 | ColumnVector Y1 = A.i() * X; |
---|
117 | LowerTriangularMatrix C1 = Cholesky(A); |
---|
118 | ColumnVector Y2 = C1.t().i() * (C1.i() * X) - Y1; |
---|
119 | Clean(Y2, 0.000000001); Print(Y2); |
---|
120 | UpperTriangularMatrix CU = C1.t().i(); |
---|
121 | LowerTriangularMatrix CL = C1.i(); |
---|
122 | Y2 = CU * (CL * X) - Y1; |
---|
123 | Clean(Y2, 0.000000001); Print(Y2); |
---|
124 | Y2 = B.i() * X - Y1; Clean(Y2, 0.000000001); Print(Y2); |
---|
125 | |
---|
126 | LowerBandMatrix C2 = Cholesky(B); |
---|
127 | Matrix M = C2 - C1; Clean(M, 0.000000001); Print(M); |
---|
128 | ColumnVector Y3 = C2.t().i() * (C2.i() * X) - Y1; |
---|
129 | Clean(Y3, 0.000000001); Print(Y3); |
---|
130 | CU = C1.t().i(); |
---|
131 | CL = C1.i(); |
---|
132 | Y3 = CU * (CL * X) - Y1; |
---|
133 | Clean(Y3, 0.000000001); Print(Y3); |
---|
134 | |
---|
135 | Y3 = B.i() * X - Y1; Clean(Y3, 0.000000001); Print(Y3); |
---|
136 | |
---|
137 | SymmetricMatrix AI = A.i(); |
---|
138 | Y2 = AI*X - Y1; Clean(Y2, 0.000000001); Print(Y2); |
---|
139 | SymmetricMatrix BI = B.i(); |
---|
140 | BandMatrix C = B; Matrix CI = C.i(); |
---|
141 | M = A.i() - CI; Clean(M, 0.000000001); Print(M); |
---|
142 | M = B.i() - CI; Clean(M, 0.000000001); Print(M); |
---|
143 | M = AI-BI; Clean(M, 0.000000001); Print(M); |
---|
144 | M = AI-CI; Clean(M, 0.000000001); Print(M); |
---|
145 | |
---|
146 | M = A; AI << M; M = AI-A; Clean(M, 0.000000001); Print(M); |
---|
147 | C = B; BI << C; M = BI-B; Clean(M, 0.000000001); Print(M); |
---|
148 | |
---|
149 | |
---|
150 | } |
---|
151 | |
---|
152 | { |
---|
153 | Tracer et1("Stage 5"); |
---|
154 | SymmetricMatrix A(4), B(4); |
---|
155 | A << 5 |
---|
156 | << 1 << 4 |
---|
157 | << 2 << 1 << 6 |
---|
158 | << 1 << 0 << 1 << 7; |
---|
159 | B << 8 |
---|
160 | << 1 << 5 |
---|
161 | << 1 << 0 << 9 |
---|
162 | << 2 << 1 << 0 << 6; |
---|
163 | LowerTriangularMatrix AB = Cholesky(A) * Cholesky(B); |
---|
164 | Matrix M = Cholesky(A) * B * Cholesky(A).t() - AB*AB.t(); |
---|
165 | Clean(M, 0.000000001); Print(M); |
---|
166 | M = A * Cholesky(B); M = M * M.t() - A * B * A; |
---|
167 | Clean(M, 0.000000001); Print(M); |
---|
168 | } |
---|
169 | { |
---|
170 | Tracer et1("Stage 6"); |
---|
171 | int N=49; |
---|
172 | int i; |
---|
173 | SymmetricBandMatrix S(N,1); |
---|
174 | Matrix B(N,N+1); B=0; |
---|
175 | for (i=1;i<=N;i++) { S(i,i)=1; B(i,i)=1; B(i,i+1)=-1; } |
---|
176 | for (i=1;i<N; i++) S(i,i+1)=-.5; |
---|
177 | DiagonalMatrix D(N+1); D = 1; |
---|
178 | B = B.t()*S.i()*B - (D-1.0/(N+1))*2.0; |
---|
179 | Clean(B, 0.000000001); Print(B); |
---|
180 | } |
---|
181 | { |
---|
182 | Tracer et1("Stage 7"); |
---|
183 | // See if you can pass a CroutMatrix to a function |
---|
184 | Matrix A(4,4); |
---|
185 | A.Row(1) << 3 << 2 << -1 << 4; |
---|
186 | A.Row(2) << -8 << 7 << 2 << 0; |
---|
187 | A.Row(3) << 2 << -2 << 3 << 1; |
---|
188 | A.Row(4) << -1 << 5 << 2 << 2; |
---|
189 | CroutMatrix B = A; |
---|
190 | Matrix C = A * Inverter(B) - IdentityMatrix(4); |
---|
191 | Clean(C, 0.000000001); Print(C); |
---|
192 | } |
---|
193 | |
---|
194 | |
---|
195 | // cout << "\nEnd of Thirteenth test\n"; |
---|
196 | } |
---|