1 | |
---|
2 | //#define WANT_STREAM |
---|
3 | #define WANT_MATH |
---|
4 | |
---|
5 | #include "include.h" |
---|
6 | |
---|
7 | #include "newmatap.h" |
---|
8 | //#include "newmatio.h" |
---|
9 | |
---|
10 | #include "tmt.h" |
---|
11 | |
---|
12 | #ifdef use_namespace |
---|
13 | using namespace NEWMAT; |
---|
14 | #endif |
---|
15 | |
---|
16 | // check D is sorted |
---|
17 | void CheckIsSorted(const DiagonalMatrix& D, bool ascending = false) |
---|
18 | { |
---|
19 | DiagonalMatrix D1 = D; |
---|
20 | if (ascending) SortAscending(D1); else SortDescending(D1); |
---|
21 | D1 -= D; Print(D1); |
---|
22 | } |
---|
23 | |
---|
24 | |
---|
25 | |
---|
26 | void trymate() |
---|
27 | { |
---|
28 | |
---|
29 | |
---|
30 | Tracer et("Fourteenth test of Matrix package"); |
---|
31 | Tracer::PrintTrace(); |
---|
32 | |
---|
33 | { |
---|
34 | Tracer et1("Stage 1"); |
---|
35 | Matrix A(8,5); |
---|
36 | { |
---|
37 | #ifndef ATandT |
---|
38 | Real a[] = { 22, 10, 2, 3, 7, |
---|
39 | 14, 7, 10, 0, 8, |
---|
40 | -1, 13, -1,-11, 3, |
---|
41 | -3, -2, 13, -2, 4, |
---|
42 | 9, 8, 1, -2, 4, |
---|
43 | 9, 1, -7, 5, -1, |
---|
44 | 2, -6, 6, 5, 1, |
---|
45 | 4, 5, 0, -2, 2 }; |
---|
46 | #else |
---|
47 | Real a[40]; |
---|
48 | a[ 0]=22; a[ 1]=10; a[ 2]= 2; a[ 3]= 3; a[ 4]= 7; |
---|
49 | a[ 5]=14; a[ 6]= 7; a[ 7]=10; a[ 8]= 0; a[ 9]= 8; |
---|
50 | a[10]=-1; a[11]=13; a[12]=-1; a[13]=-11;a[14]= 3; |
---|
51 | a[15]=-3; a[16]=-2; a[17]=13; a[18]=-2; a[19]= 4; |
---|
52 | a[20]= 9; a[21]= 8; a[22]= 1; a[23]=-2; a[24]= 4; |
---|
53 | a[25]= 9; a[26]= 1; a[27]=-7; a[28]= 5; a[29]=-1; |
---|
54 | a[30]= 2; a[31]=-6; a[32]= 6; a[33]= 5; a[34]= 1; |
---|
55 | a[35]= 4; a[36]= 5; a[37]= 0; a[38]=-2; a[39]= 2; |
---|
56 | #endif |
---|
57 | A << a; |
---|
58 | } |
---|
59 | DiagonalMatrix D; Matrix U; Matrix V; |
---|
60 | int anc = A.Ncols(); IdentityMatrix I(anc); |
---|
61 | SymmetricMatrix S1; S1 << A.t() * A; |
---|
62 | SymmetricMatrix S2; S2 << A * A.t(); |
---|
63 | Real zero = 0.0; SVD(A+zero,D,U,V); CheckIsSorted(D); |
---|
64 | DiagonalMatrix D1; SVD(A,D1); CheckIsSorted(D1); |
---|
65 | Print(DiagonalMatrix(D-D1)); |
---|
66 | Matrix W; |
---|
67 | SVD(A, D1, W, W, true, false); D1 -= D; W -= U; |
---|
68 | Clean(W,0.000000001); Print(W); Clean(D1,0.000000001); Print(D1); |
---|
69 | Matrix WX; |
---|
70 | SVD(A, D1, WX, W, false, true); D1 -= D; W -= V; |
---|
71 | Clean(W,0.000000001); Print(W); Clean(D1,0.000000001); Print(D1); |
---|
72 | Matrix SU = U.t() * U - I; Clean(SU,0.000000001); Print(SU); |
---|
73 | Matrix SV = V.t() * V - I; Clean(SV,0.000000001); Print(SV); |
---|
74 | Matrix B = U * D * V.t() - A; Clean(B,0.000000001); Print(B); |
---|
75 | D1=0.0; SVD(A,D1,A); CheckIsSorted(D1); Print(Matrix(A-U)); |
---|
76 | D(1) -= sqrt(1248.0); D(2) -= 20; D(3) -= sqrt(384.0); |
---|
77 | Clean(D,0.000000001); Print(D); |
---|
78 | |
---|
79 | Jacobi(S1, D, V); CheckIsSorted(D, true); |
---|
80 | V = S1 - V * D * V.t(); Clean(V,0.000000001); Print(V); |
---|
81 | D = D.Reverse(); D(1)-=1248; D(2)-=400; D(3)-=384; |
---|
82 | Clean(D,0.000000001); Print(D); |
---|
83 | |
---|
84 | Jacobi(S1, D); CheckIsSorted(D, true); |
---|
85 | D = D.Reverse(); D(1)-=1248; D(2)-=400; D(3)-=384; |
---|
86 | Clean(D,0.000000001); Print(D); |
---|
87 | |
---|
88 | SymmetricMatrix JW(5); |
---|
89 | Jacobi(S1, D, JW); CheckIsSorted(D, true); |
---|
90 | D = D.Reverse(); D(1)-=1248; D(2)-=400; D(3)-=384; |
---|
91 | Clean(D,0.000000001); Print(D); |
---|
92 | |
---|
93 | Jacobi(S2, D, V); CheckIsSorted(D, true); |
---|
94 | V = S2 - V * D * V.t(); Clean(V,0.000000001); Print(V); |
---|
95 | D = D.Reverse(); D(1)-=1248; D(2)-=400; D(3)-=384; |
---|
96 | Clean(D,0.000000001); Print(D); |
---|
97 | |
---|
98 | EigenValues(S1, D, V); CheckIsSorted(D, true); |
---|
99 | V = S1 - V * D * V.t(); Clean(V,0.000000001); Print(V); |
---|
100 | D(5)-=1248; D(4)-=400; D(3)-=384; |
---|
101 | Clean(D,0.000000001); Print(D); |
---|
102 | |
---|
103 | EigenValues(S2, D, V); CheckIsSorted(D, true); |
---|
104 | V = S2 - V * D * V.t(); Clean(V,0.000000001); Print(V); |
---|
105 | D(8)-=1248; D(7)-=400; D(6)-=384; |
---|
106 | Clean(D,0.000000001); Print(D); |
---|
107 | |
---|
108 | EigenValues(S1, D); CheckIsSorted(D, true); |
---|
109 | D(5)-=1248; D(4)-=400; D(3)-=384; |
---|
110 | Clean(D,0.000000001); Print(D); |
---|
111 | |
---|
112 | SymmetricMatrix EW(S2); |
---|
113 | EigenValues(S2, D, EW); CheckIsSorted(D, true); |
---|
114 | D(8)-=1248; D(7)-=400; D(6)-=384; |
---|
115 | Clean(D,0.000000001); Print(D); |
---|
116 | |
---|
117 | } |
---|
118 | |
---|
119 | { |
---|
120 | Tracer et1("Stage 2"); |
---|
121 | Matrix A(20,21); |
---|
122 | int i,j; |
---|
123 | for (i=1; i<=20; i++) for (j=1; j<=21; j++) |
---|
124 | { if (i>j) A(i,j) = 0; else if (i==j) A(i,j) = 21-i; else A(i,j) = -1; } |
---|
125 | A = A.t(); |
---|
126 | SymmetricMatrix S1; S1 << A.t() * A; |
---|
127 | SymmetricMatrix S2; S2 << A * A.t(); |
---|
128 | DiagonalMatrix D; Matrix U; Matrix V; |
---|
129 | #ifdef ATandT |
---|
130 | int anc = A.Ncols(); DiagonalMatrix I(anc); // AT&T 2.1 bug |
---|
131 | #else |
---|
132 | DiagonalMatrix I(A.Ncols()); |
---|
133 | #endif |
---|
134 | I=1.0; |
---|
135 | SVD(A,D,U,V); CheckIsSorted(D); |
---|
136 | Matrix SU = U.t() * U - I; Clean(SU,0.000000001); Print(SU); |
---|
137 | Matrix SV = V.t() * V - I; Clean(SV,0.000000001); Print(SV); |
---|
138 | Matrix B = U * D * V.t() - A; Clean(B,0.000000001); Print(B); |
---|
139 | for (i=1; i<=20; i++) D(i) -= sqrt((22.0-i)*(21.0-i)); |
---|
140 | Clean(D,0.000000001); Print(D); |
---|
141 | Jacobi(S1, D, V); CheckIsSorted(D, true); |
---|
142 | V = S1 - V * D * V.t(); Clean(V,0.000000001); Print(V); |
---|
143 | D = D.Reverse(); |
---|
144 | for (i=1; i<=20; i++) D(i) -= (22-i)*(21-i); |
---|
145 | Clean(D,0.000000001); Print(D); |
---|
146 | Jacobi(S2, D, V); CheckIsSorted(D, true); |
---|
147 | V = S2 - V * D * V.t(); Clean(V,0.000000001); Print(V); |
---|
148 | D = D.Reverse(); |
---|
149 | for (i=1; i<=20; i++) D(i) -= (22-i)*(21-i); |
---|
150 | Clean(D,0.000000001); Print(D); |
---|
151 | |
---|
152 | EigenValues(S1, D, V); CheckIsSorted(D, true); |
---|
153 | V = S1 - V * D * V.t(); Clean(V,0.000000001); Print(V); |
---|
154 | for (i=1; i<=20; i++) D(i) -= (i+1)*i; |
---|
155 | Clean(D,0.000000001); Print(D); |
---|
156 | EigenValues(S2, D, V); CheckIsSorted(D, true); |
---|
157 | V = S2 - V * D * V.t(); Clean(V,0.000000001); Print(V); |
---|
158 | for (i=2; i<=21; i++) D(i) -= (i-1)*i; |
---|
159 | Clean(D,0.000000001); Print(D); |
---|
160 | |
---|
161 | EigenValues(S1, D); CheckIsSorted(D, true); |
---|
162 | for (i=1; i<=20; i++) D(i) -= (i+1)*i; |
---|
163 | Clean(D,0.000000001); Print(D); |
---|
164 | EigenValues(S2, D); CheckIsSorted(D, true); |
---|
165 | for (i=2; i<=21; i++) D(i) -= (i-1)*i; |
---|
166 | Clean(D,0.000000001); Print(D); |
---|
167 | } |
---|
168 | |
---|
169 | { |
---|
170 | Tracer et1("Stage 3"); |
---|
171 | Matrix A(30,30); |
---|
172 | int i,j; |
---|
173 | for (i=1; i<=30; i++) for (j=1; j<=30; j++) |
---|
174 | { if (i>j) A(i,j) = 0; else if (i==j) A(i,j) = 1; else A(i,j) = -1; } |
---|
175 | Real d1 = A.LogDeterminant().Value(); |
---|
176 | DiagonalMatrix D; Matrix U; Matrix V; |
---|
177 | #ifdef ATandT |
---|
178 | int anc = A.Ncols(); DiagonalMatrix I(anc); // AT&T 2.1 bug |
---|
179 | #else |
---|
180 | DiagonalMatrix I(A.Ncols()); |
---|
181 | #endif |
---|
182 | I=1.0; |
---|
183 | SVD(A,D,U,V); CheckIsSorted(D); |
---|
184 | Matrix SU = U.t() * U - I; Clean(SU,0.000000001); Print(SU); |
---|
185 | Matrix SV = V.t() * V - I; Clean(SV,0.000000001); Print(SV); |
---|
186 | Real d2 = D.LogDeterminant().Value(); |
---|
187 | Matrix B = U * D * V.t() - A; Clean(B,0.000000001); Print(B); |
---|
188 | Real d3 = D.LogDeterminant().Value(); |
---|
189 | ColumnVector Test(3); |
---|
190 | Test(1) = d1 - 1; Test(2) = d2 - 1; Test(3) = d3 - 1; |
---|
191 | Clean(Test,0.00000001); Print(Test); // only 8 decimal figures |
---|
192 | A.ReSize(2,2); |
---|
193 | Real a = 1.5; Real b = 2; Real c = 2 * (a*a + b*b); |
---|
194 | A << a << b << a << b; |
---|
195 | I.ReSize(2); I=1; |
---|
196 | SVD(A,D,U,V); CheckIsSorted(D); |
---|
197 | SU = U.t() * U - I; Clean(SU,0.000000001); Print(SU); |
---|
198 | SV = V.t() * V - I; Clean(SV,0.000000001); Print(SV); |
---|
199 | B = U * D * V.t() - A; Clean(B,0.000000001); Print(B); |
---|
200 | D = D*D; SortDescending(D); |
---|
201 | DiagonalMatrix D50(2); D50 << c << 0; D = D - D50; |
---|
202 | Clean(D,0.000000001); |
---|
203 | Print(D); |
---|
204 | A << a << a << b << b; |
---|
205 | SVD(A,D,U,V); CheckIsSorted(D); |
---|
206 | SU = U.t() * U - I; Clean(SU,0.000000001); Print(SU); |
---|
207 | SV = V.t() * V - I; Clean(SV,0.000000001); Print(SV); |
---|
208 | B = U * D * V.t() - A; Clean(B,0.000000001); Print(B); |
---|
209 | D = D*D; SortDescending(D); |
---|
210 | D = D - D50; |
---|
211 | Clean(D,0.000000001); |
---|
212 | Print(D); |
---|
213 | } |
---|
214 | |
---|
215 | { |
---|
216 | Tracer et1("Stage 4"); |
---|
217 | |
---|
218 | // test for bug found by Olof Runborg, |
---|
219 | // Department of Numerical Analysis and Computer Science (NADA), |
---|
220 | // KTH, Stockholm |
---|
221 | |
---|
222 | Matrix A(22,20); |
---|
223 | |
---|
224 | A = 0; |
---|
225 | |
---|
226 | int a=1; |
---|
227 | |
---|
228 | A(a+0,a+2) = 1; A(a+0,a+18) = -1; |
---|
229 | A(a+1,a+9) = 1; A(a+1,a+12) = -1; |
---|
230 | A(a+2,a+11) = 1; A(a+2,a+12) = -1; |
---|
231 | A(a+3,a+10) = 1; A(a+3,a+19) = -1; |
---|
232 | A(a+4,a+16) = 1; A(a+4,a+19) = -1; |
---|
233 | A(a+5,a+17) = 1; A(a+5,a+18) = -1; |
---|
234 | A(a+6,a+10) = 1; A(a+6,a+4) = -1; |
---|
235 | A(a+7,a+3) = 1; A(a+7,a+2) = -1; |
---|
236 | A(a+8,a+14) = 1; A(a+8,a+15) = -1; |
---|
237 | A(a+9,a+13) = 1; A(a+9,a+16) = -1; |
---|
238 | A(a+10,a+8) = 1; A(a+10,a+9) = -1; |
---|
239 | A(a+11,a+1) = 1; A(a+11,a+15) = -1; |
---|
240 | A(a+12,a+16) = 1; A(a+12,a+4) = -1; |
---|
241 | A(a+13,a+6) = 1; A(a+13,a+9) = -1; |
---|
242 | A(a+14,a+5) = 1; A(a+14,a+4) = -1; |
---|
243 | A(a+15,a+0) = 1; A(a+15,a+1) = -1; |
---|
244 | A(a+16,a+14) = 1; A(a+16,a+0) = -1; |
---|
245 | A(a+17,a+7) = 1; A(a+17,a+6) = -1; |
---|
246 | A(a+18,a+13) = 1; A(a+18,a+5) = -1; |
---|
247 | A(a+19,a+7) = 1; A(a+19,a+8) = -1; |
---|
248 | A(a+20,a+17) = 1; A(a+20,a+3) = -1; |
---|
249 | A(a+21,a+6) = 1; A(a+21,a+11) = -1; |
---|
250 | |
---|
251 | |
---|
252 | Matrix U, V; DiagonalMatrix S; |
---|
253 | |
---|
254 | SVD(A, S, U, V, true, true); CheckIsSorted(S); |
---|
255 | |
---|
256 | DiagonalMatrix D(20); D = 1; |
---|
257 | |
---|
258 | Matrix tmp = U.t() * U - D; |
---|
259 | Clean(tmp,0.000000001); Print(tmp); |
---|
260 | |
---|
261 | tmp = V.t() * V - D; |
---|
262 | Clean(tmp,0.000000001); Print(tmp); |
---|
263 | |
---|
264 | tmp = U * S * V.t() - A ; |
---|
265 | Clean(tmp,0.000000001); Print(tmp); |
---|
266 | |
---|
267 | } |
---|
268 | |
---|
269 | { |
---|
270 | Tracer et1("Stage 5"); |
---|
271 | Matrix A(10,10); |
---|
272 | |
---|
273 | A.Row(1) << 1.00 << 0.07 << 0.05 << 0.00 << 0.06 |
---|
274 | << 0.09 << 0.03 << 0.02 << 0.02 << -0.03; |
---|
275 | A.Row(2) << 0.07 << 1.00 << 0.05 << 0.05 << -0.03 |
---|
276 | << 0.07 << 0.00 << 0.07 << 0.00 << 0.02; |
---|
277 | A.Row(3) << 0.05 << 0.05 << 1.00 << 0.05 << 0.02 |
---|
278 | << 0.01 << -0.05 << 0.04 << 0.05 << -0.03; |
---|
279 | A.Row(4) << 0.00 << 0.05 << 0.05 << 1.00 << -0.05 |
---|
280 | << 0.04 << 0.01 << 0.02 << -0.05 << 0.00; |
---|
281 | A.Row(5) << 0.06 << -0.03 << 0.02 << -0.05 << 1.00 |
---|
282 | << -0.03 << 0.02 << -0.02 << 0.04 << 0.00; |
---|
283 | A.Row(6) << 0.09 << 0.07 << 0.01 << 0.04 << -0.03 |
---|
284 | << 1.00 << -0.06 << 0.08 << -0.02 << -0.10; |
---|
285 | A.Row(7) << 0.03 << 0.00 << -0.05 << 0.01 << 0.02 |
---|
286 | << -0.06 << 1.00 << 0.09 << 0.12 << -0.03; |
---|
287 | A.Row(8) << 0.02 << 0.07 << 0.04 << 0.02 << -0.02 |
---|
288 | << 0.08 << 0.09 << 1.00 << 0.00 << -0.02; |
---|
289 | A.Row(9) << 0.02 << 0.00 << 0.05 << -0.05 << 0.04 |
---|
290 | << -0.02 << 0.12 << 0.00 << 1.00 << 0.02; |
---|
291 | A.Row(10) << -0.03 << 0.02 << -0.03 << 0.00 << 0.00 |
---|
292 | << -0.10 << -0.03 << -0.02 << 0.02 << 1.00; |
---|
293 | |
---|
294 | SymmetricMatrix AS; AS << A; |
---|
295 | Matrix V; DiagonalMatrix D, D1; |
---|
296 | ColumnVector Check(6); |
---|
297 | EigenValues(AS,D,V); CheckIsSorted(D, true); |
---|
298 | Check(1) = MaximumAbsoluteValue(A - V * D * V.t()); |
---|
299 | DiagonalMatrix I(10); I = 1; |
---|
300 | Check(2) = MaximumAbsoluteValue(V * V.t() - I); |
---|
301 | Check(3) = MaximumAbsoluteValue(V.t() * V - I); |
---|
302 | |
---|
303 | EigenValues(AS, D1); CheckIsSorted(D1, true); |
---|
304 | D -= D1; |
---|
305 | Clean(D,0.000000001); Print(D); |
---|
306 | |
---|
307 | Jacobi(AS,D,V); |
---|
308 | Check(4) = MaximumAbsoluteValue(A - V * D * V.t()); |
---|
309 | Check(5) = MaximumAbsoluteValue(V * V.t() - I); |
---|
310 | Check(6) = MaximumAbsoluteValue(V.t() * V - I); |
---|
311 | |
---|
312 | SortAscending(D); |
---|
313 | D -= D1; |
---|
314 | Clean(D,0.000000001); Print(D); |
---|
315 | |
---|
316 | Clean(Check,0.000000001); Print(Check); |
---|
317 | |
---|
318 | // Check loading rows |
---|
319 | |
---|
320 | SymmetricMatrix B(10); |
---|
321 | |
---|
322 | B.Row(1) << 1.00; |
---|
323 | B.Row(2) << 0.07 << 1.00; |
---|
324 | B.Row(3) << 0.05 << 0.05 << 1.00; |
---|
325 | B.Row(4) << 0.00 << 0.05 << 0.05 << 1.00; |
---|
326 | B.Row(5) << 0.06 << -0.03 << 0.02 << -0.05 << 1.00; |
---|
327 | B.Row(6) << 0.09 << 0.07 << 0.01 << 0.04 << -0.03 |
---|
328 | << 1.00; |
---|
329 | B.Row(7) << 0.03 << 0.00 << -0.05 << 0.01 << 0.02 |
---|
330 | << -0.06 << 1.00; |
---|
331 | B.Row(8) << 0.02 << 0.07 << 0.04 << 0.02 << -0.02 |
---|
332 | << 0.08 << 0.09 << 1.00; |
---|
333 | B.Row(9) << 0.02 << 0.00 << 0.05 << -0.05 << 0.04 |
---|
334 | << -0.02 << 0.12 << 0.00 << 1.00; |
---|
335 | B.Row(10) << -0.03 << 0.02 << -0.03 << 0.00 << 0.00 |
---|
336 | << -0.10 << -0.03 << -0.02 << 0.02 << 1.00; |
---|
337 | |
---|
338 | B -= AS; Print(B); |
---|
339 | |
---|
340 | } |
---|
341 | |
---|
342 | { |
---|
343 | Tracer et1("Stage 6"); |
---|
344 | // badly scaled matrix |
---|
345 | Matrix A(9,9); |
---|
346 | |
---|
347 | A.Row(1) << 1.13324e+012 << 3.68788e+011 << 3.35163e+009 |
---|
348 | << 3.50193e+011 << 1.25335e+011 << 1.02212e+009 |
---|
349 | << 3.16602e+009 << 1.02418e+009 << 9.42959e+006; |
---|
350 | A.Row(2) << 3.68788e+011 << 1.67128e+011 << 1.27449e+009 |
---|
351 | << 1.25335e+011 << 6.05413e+010 << 4.34573e+008 |
---|
352 | << 1.02418e+009 << 4.69192e+008 << 3.61098e+006; |
---|
353 | A.Row(3) << 3.35163e+009 << 1.27449e+009 << 1.25571e+007 |
---|
354 | << 1.02212e+009 << 4.34573e+008 << 3.69769e+006 |
---|
355 | << 9.42959e+006 << 3.61098e+006 << 3.59450e+004; |
---|
356 | A.Row(4) << 3.50193e+011 << 1.25335e+011 << 1.02212e+009 |
---|
357 | << 1.43514e+011 << 5.42310e+010 << 4.15822e+008 |
---|
358 | << 1.23068e+009 << 4.31545e+008 << 3.58714e+006; |
---|
359 | A.Row(5) << 1.25335e+011 << 6.05413e+010 << 4.34573e+008 |
---|
360 | << 5.42310e+010 << 2.76601e+010 << 1.89102e+008 |
---|
361 | << 4.31545e+008 << 2.09778e+008 << 1.51083e+006; |
---|
362 | A.Row(6) << 1.02212e+009 << 4.34573e+008 << 3.69769e+006 |
---|
363 | << 4.15822e+008 << 1.89102e+008 << 1.47143e+006 |
---|
364 | << 3.58714e+006 << 1.51083e+006 << 1.30165e+004; |
---|
365 | A.Row(7) << 3.16602e+009 << 1.02418e+009 << 9.42959e+006 |
---|
366 | << 1.23068e+009 << 4.31545e+008 << 3.58714e+006 |
---|
367 | << 1.12335e+007 << 3.54778e+006 << 3.34311e+004; |
---|
368 | A.Row(8) << 1.02418e+009 << 4.69192e+008 << 3.61098e+006 |
---|
369 | << 4.31545e+008 << 2.09778e+008 << 1.51083e+006 |
---|
370 | << 3.54778e+006 << 1.62552e+006 << 1.25885e+004; |
---|
371 | A.Row(9) << 9.42959e+006 << 3.61098e+006 << 3.59450e+004 |
---|
372 | << 3.58714e+006 << 1.51083e+006 << 1.30165e+004 |
---|
373 | << 3.34311e+004 << 1.25885e+004 << 1.28000e+002; |
---|
374 | |
---|
375 | |
---|
376 | SymmetricMatrix AS; AS << A; |
---|
377 | Matrix V; DiagonalMatrix D, D1; |
---|
378 | ColumnVector Check(6); |
---|
379 | EigenValues(AS,D,V); CheckIsSorted(D, true); |
---|
380 | Check(1) = MaximumAbsoluteValue(A - V * D * V.t()) / 100000; |
---|
381 | DiagonalMatrix I(9); I = 1; |
---|
382 | Check(2) = MaximumAbsoluteValue(V * V.t() - I); |
---|
383 | Check(3) = MaximumAbsoluteValue(V.t() * V - I); |
---|
384 | |
---|
385 | EigenValues(AS, D1); |
---|
386 | D -= D1; |
---|
387 | Clean(D,0.001); Print(D); |
---|
388 | |
---|
389 | Jacobi(AS,D,V); |
---|
390 | Check(4) = MaximumAbsoluteValue(A - V * D * V.t()) / 100000; |
---|
391 | Check(5) = MaximumAbsoluteValue(V * V.t() - I); |
---|
392 | Check(6) = MaximumAbsoluteValue(V.t() * V - I); |
---|
393 | |
---|
394 | SortAscending(D); |
---|
395 | D -= D1; |
---|
396 | Clean(D,0.001); Print(D); |
---|
397 | |
---|
398 | Clean(Check,0.0000001); Print(Check); |
---|
399 | } |
---|
400 | |
---|
401 | { |
---|
402 | Tracer et1("Stage 7"); |
---|
403 | // matrix with all singular values close to 1 |
---|
404 | Matrix A(8,8); |
---|
405 | A.Row(1)<<-0.4343<<-0.0445<<-0.4582<<-0.1612<<-0.3191<<-0.6784<<0.1068<<0; |
---|
406 | A.Row(2)<<0.5791<<0.5517<<0.2575<<-0.1055<<-0.0437<<-0.5282<<0.0442<<0; |
---|
407 | A.Row(3)<<0.5709<<-0.5179<<-0.3275<<0.2598<<-0.196<<-0.1451<<-0.4143<<0; |
---|
408 | A.Row(4)<<0.2785<<-0.5258<<0.1251<<-0.4382<<0.0514<<-0.0446<<0.6586<<0; |
---|
409 | A.Row(5)<<0.2654<<0.3736<<-0.7436<<-0.0122<<0.0376<<0.3465<<0.3397<<0; |
---|
410 | A.Row(6)<<0.0173<<-0.0056<<-0.1903<<-0.7027<<0.4863<<-0.0199<<-0.4825<<0; |
---|
411 | A.Row(7)<<0.0434<<0.0966<<0.1083<<-0.4576<<-0.7857<<0.3425<<-0.1818<<0; |
---|
412 | A.Row(8)<<0.0<<0.0<<0.0<<0.0<<0.0<<0.0<<0.0<<-1.0; |
---|
413 | Matrix U,V; DiagonalMatrix D; |
---|
414 | SVD(A,D,U,V); CheckIsSorted(D); |
---|
415 | Matrix B = U * D * V.t() - A; Clean(B,0.000000001); Print(B); |
---|
416 | DiagonalMatrix I(8); I = 1; D -= I; Clean(D,0.0001); Print(D); |
---|
417 | U *= U.t(); U -= I; Clean(U,0.000000001); Print(U); |
---|
418 | V *= V.t(); V -= I; Clean(V,0.000000001); Print(V); |
---|
419 | |
---|
420 | } |
---|
421 | |
---|
422 | { |
---|
423 | Tracer et1("Stage 8"); |
---|
424 | // check SortSV functions |
---|
425 | |
---|
426 | Matrix A(15, 10); |
---|
427 | int i, j; |
---|
428 | for (i = 1; i <= 15; ++i) for (j = 1; j <= 10; ++j) |
---|
429 | A(i, j) = i + j / 1000.0; |
---|
430 | DiagonalMatrix D(10); |
---|
431 | D << 0.2 << 0.5 << 0.1 << 0.7 << 0.8 << 0.3 << 0.4 << 0.7 << 0.9 << 0.6; |
---|
432 | Matrix U = A; Matrix V = 10 - 2 * A; |
---|
433 | Matrix Prod = U * D * V.t(); |
---|
434 | |
---|
435 | DiagonalMatrix D2 = D; SortDescending(D2); |
---|
436 | DiagonalMatrix D1 = D; SortSV(D1, U, V); Matrix X = D1 - D2; Print(X); |
---|
437 | X = Prod - U * D1 * V.t(); Clean(X,0.000000001); Print(X); |
---|
438 | U = A; V = 10 - 2 * A; |
---|
439 | D1 = D; SortSV(D1, U); X = D1 - D2; Print(X); |
---|
440 | D1 = D; SortSV(D1, V); X = D1 - D2; Print(X); |
---|
441 | X = Prod - U * D1 * V.t(); Clean(X,0.000000001); Print(X); |
---|
442 | |
---|
443 | D2 = D; SortAscending(D2); |
---|
444 | U = A; V = 10 - 2 * A; |
---|
445 | D1 = D; SortSV(D1, U, V, true); X = D1 - D2; Print(X); |
---|
446 | X = Prod - U * D1 * V.t(); Clean(X,0.000000001); Print(X); |
---|
447 | U = A; V = 10 - 2 * A; |
---|
448 | D1 = D; SortSV(D1, U, true); X = D1 - D2; Print(X); |
---|
449 | D1 = D; SortSV(D1, V, true); X = D1 - D2; Print(X); |
---|
450 | X = Prod - U * D1 * V.t(); Clean(X,0.000000001); Print(X); |
---|
451 | } |
---|
452 | |
---|
453 | { |
---|
454 | Tracer et1("Stage 9"); |
---|
455 | // Tom William's example |
---|
456 | Matrix A(10,10); |
---|
457 | Matrix U; |
---|
458 | Matrix V; |
---|
459 | DiagonalMatrix Sigma; |
---|
460 | Real myVals[] = |
---|
461 | { |
---|
462 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
---|
463 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
---|
464 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
---|
465 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
---|
466 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
---|
467 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, |
---|
468 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, |
---|
469 | 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, |
---|
470 | 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, |
---|
471 | 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, |
---|
472 | }; |
---|
473 | |
---|
474 | A << myVals; |
---|
475 | SVD(A, Sigma, U, V); CheckIsSorted(Sigma); |
---|
476 | A -= U * Sigma * V.t(); |
---|
477 | Clean(A, 0.000000001); Print(A); |
---|
478 | } |
---|
479 | |
---|
480 | |
---|
481 | |
---|
482 | } |
---|