1 | |
---|
2 | //#define WANT_STREAM |
---|
3 | |
---|
4 | #define WANT_MATH // for sqrt |
---|
5 | |
---|
6 | #include "include.h" |
---|
7 | |
---|
8 | #include "newmatap.h" |
---|
9 | |
---|
10 | #include "tmt.h" |
---|
11 | |
---|
12 | #ifdef use_namespace |
---|
13 | using namespace NEWMAT; |
---|
14 | #endif |
---|
15 | |
---|
16 | |
---|
17 | |
---|
18 | void trymatg() |
---|
19 | { |
---|
20 | // cout << "\nSixteenth test of Matrix package\n"; |
---|
21 | // cout << "\n"; |
---|
22 | Tracer et("Sixteenth test of Matrix package"); |
---|
23 | Tracer::PrintTrace(); |
---|
24 | |
---|
25 | int i,j; |
---|
26 | Matrix M(4,7); |
---|
27 | for (i=1; i<=4; i++) for (j=1; j<=7; j++) M(i,j) = 100 * i + j; |
---|
28 | ColumnVector CV = M.AsColumn(); |
---|
29 | { |
---|
30 | Tracer et1("Stage 1"); |
---|
31 | RowVector test(7); |
---|
32 | test(1) = SumSquare(M); |
---|
33 | test(2) = SumSquare(CV); |
---|
34 | test(3) = SumSquare(CV.t()); |
---|
35 | test(4) = SumSquare(CV.AsDiagonal()); |
---|
36 | test(5) = SumSquare(M.AsColumn()); |
---|
37 | test(6) = Matrix(CV.t()*CV)(1,1); |
---|
38 | test(7) = (CV.t()*CV).AsScalar(); |
---|
39 | test = test - 2156560.0; Print(test); |
---|
40 | } |
---|
41 | |
---|
42 | UpperTriangularMatrix U(6); |
---|
43 | for (i=1; i<=6; i++) for (j=i; j<=6; j++) U(i,j) = i + (i-j) * (i-j); |
---|
44 | M = U; DiagonalMatrix D; D << U; |
---|
45 | LowerTriangularMatrix L = U.t(); SymmetricMatrix S; S << (L+U)/2.0; |
---|
46 | { |
---|
47 | Tracer et1("Stage 2"); |
---|
48 | RowVector test(6); |
---|
49 | test(1) = U.Trace(); |
---|
50 | test(2) = L.Trace(); |
---|
51 | test(3) = D.Trace(); |
---|
52 | test(4) = S.Trace(); |
---|
53 | test(5) = M.Trace(); |
---|
54 | test(6) = ((L+U)/2.0).Trace(); |
---|
55 | test = test - 21; Print(test); |
---|
56 | test(1) = LogDeterminant(U).Value(); |
---|
57 | test(2) = LogDeterminant(L).Value(); |
---|
58 | test(3) = LogDeterminant(D).Value(); |
---|
59 | test(4) = LogDeterminant(D).Value(); |
---|
60 | test(5) = LogDeterminant((L+D)/2.0).Value(); |
---|
61 | test(6) = Determinant((L+D)/2.0); |
---|
62 | test = test - 720; Clean(test,0.000000001); Print(test); |
---|
63 | } |
---|
64 | |
---|
65 | { |
---|
66 | Tracer et1("Stage 3"); |
---|
67 | S << L*U; M = S; |
---|
68 | RowVector test(8); |
---|
69 | test(1) = LogDeterminant(S).Value(); |
---|
70 | test(2) = LogDeterminant(M).Value(); |
---|
71 | test(3) = LogDeterminant(L*U).Value(); |
---|
72 | test(4) = LogDeterminant(Matrix(L*L)).Value(); |
---|
73 | test(5) = Determinant(S); |
---|
74 | test(6) = Determinant(M); |
---|
75 | test(7) = Determinant(L*U); |
---|
76 | test(8) = Determinant(Matrix(L*L)); |
---|
77 | test = test - 720.0 * 720.0; Clean(test,0.00000001); Print(test); |
---|
78 | } |
---|
79 | |
---|
80 | { |
---|
81 | Tracer et1("Stage 4"); |
---|
82 | M = S * S; |
---|
83 | Matrix SX = S; |
---|
84 | RowVector test(3); |
---|
85 | test(1) = SumSquare(S); |
---|
86 | test(2) = SumSquare(SX); |
---|
87 | test(3) = Trace(M); |
---|
88 | test = test - 3925961.0; Print(test); |
---|
89 | } |
---|
90 | { |
---|
91 | Tracer et1("Stage 5"); |
---|
92 | SymmetricMatrix SM(10), SN(10); |
---|
93 | Real S = 0.0; |
---|
94 | for (i=1; i<=10; i++) for (j=i; j<=10; j++) |
---|
95 | { |
---|
96 | SM(i,j) = 1.5 * i - j; SN(i,j) = SM(i,j) * SM(i,j); |
---|
97 | if (SM(i,j) < 0.0) SN(i,j) = - SN(i,j); |
---|
98 | S += SN(i,j) * ((i==j) ? 1.0 : 2.0); |
---|
99 | } |
---|
100 | Matrix M = SM, N = SN; RowVector test(4); |
---|
101 | test(1) = SumAbsoluteValue(SN); |
---|
102 | test(2) = SumAbsoluteValue(-SN); |
---|
103 | test(3) = SumAbsoluteValue(N); |
---|
104 | test(4) = SumAbsoluteValue(-N); |
---|
105 | test = test - 1168.75; Print(test); |
---|
106 | test(1) = Sum(SN); |
---|
107 | test(2) = -Sum(-SN); |
---|
108 | test(3) = Sum(N); |
---|
109 | test(4) = -Sum(-N); |
---|
110 | test = test - S; Print(test); |
---|
111 | test(1) = MaximumAbsoluteValue(SM); |
---|
112 | test(2) = MaximumAbsoluteValue(-SM); |
---|
113 | test(3) = MaximumAbsoluteValue(M); |
---|
114 | test(4) = MaximumAbsoluteValue(-M); |
---|
115 | test = test - 8.5; Print(test); |
---|
116 | } |
---|
117 | { |
---|
118 | Tracer et1("Stage 6"); |
---|
119 | Matrix M(15,20); Real value = 0.0; |
---|
120 | for (i=1; i<=15; i++) { for (j=1; j<=20; j++) M(i,j) = 1.5 * i - j; } |
---|
121 | for (i=1; i<=20; i++) |
---|
122 | { Real v = SumAbsoluteValue(M.Column(i)); if (value<v) value = v; } |
---|
123 | RowVector test(3); |
---|
124 | test(1) = value; |
---|
125 | test(2) = Norm1(M); |
---|
126 | test(3) = NormInfinity(M.t()); |
---|
127 | test = test - 165; Print(test); |
---|
128 | test.ReSize(5); |
---|
129 | ColumnVector CV = M.AsColumn(); M = CV.t(); |
---|
130 | test(1) = Norm1(CV.t()); |
---|
131 | test(2) = MaximumAbsoluteValue(M); |
---|
132 | test(3) = NormInfinity(CV); |
---|
133 | test(4) = Norm1(M); |
---|
134 | test(5) = NormInfinity(M.t()); |
---|
135 | test = test - 21.5; Print(test); |
---|
136 | } |
---|
137 | { |
---|
138 | Tracer et1("Stage 7"); |
---|
139 | Matrix M(15,20); |
---|
140 | for (i=1; i<=15; i++) { for (j=1; j<=20; j++) M(i,j) = 2.5 * i - j; } |
---|
141 | SymmetricMatrix SM; SM << M * M.t(); |
---|
142 | ColumnVector test(6); |
---|
143 | test(1) = sqrt(SumSquare(M)) - NormFrobenius(M); |
---|
144 | Real a = sqrt(SumSquare(SM)); |
---|
145 | test(2) = NormFrobenius(M * M.t()) - a; |
---|
146 | test(3) = SM.NormFrobenius() - a; |
---|
147 | test(4) = (M * M.t()).NormFrobenius() - a; |
---|
148 | test(5) = NormFrobenius(SM) - a; |
---|
149 | test(6) = Trace(SM) - M.SumSquare(); |
---|
150 | Clean(test, 0.00000001); Print(test); |
---|
151 | } |
---|
152 | |
---|
153 | // cout << "\nEnd of Sixteenth test\n"; |
---|
154 | } |
---|