[3326] | 1 | |
---|
| 2 | /* |
---|
| 3 | orxonox - the future of 3D-vertical-scrollers |
---|
| 4 | |
---|
| 5 | Copyright (C) 2004 orx |
---|
| 6 | |
---|
| 7 | This program is free software; you can redistribute it and/or modify |
---|
| 8 | it under the terms of the GNU General Public License as published by |
---|
| 9 | the Free Software Foundation; either version 2, or (at your option) |
---|
| 10 | any later version. |
---|
| 11 | |
---|
| 12 | ### File Specific: |
---|
| 13 | main-programmer: Benjamin Grauer |
---|
| 14 | co-programmer: ... |
---|
| 15 | |
---|
| 16 | \todo Null-Parent => center of the coord system - singleton |
---|
| 17 | \todo Smooth-Parent: delay, speed |
---|
| 18 | \todo destroy the stuff again, delete... |
---|
| 19 | */ |
---|
| 20 | |
---|
| 21 | #include "matrix.h" |
---|
| 22 | |
---|
[3327] | 23 | Matrix::Matrix (size_t row, size_t col) |
---|
[3326] | 24 | { |
---|
| 25 | _m = new base_mat( row, col, 0); |
---|
| 26 | } |
---|
| 27 | |
---|
| 28 | // copy constructor |
---|
[3327] | 29 | Matrix::Matrix (const Matrix& m) |
---|
[3326] | 30 | { |
---|
| 31 | _m = m._m; |
---|
| 32 | _m->Refcnt++; |
---|
| 33 | } |
---|
| 34 | |
---|
| 35 | // Internal copy constructor |
---|
[3327] | 36 | void Matrix::clone () |
---|
[3326] | 37 | { |
---|
| 38 | _m->Refcnt--; |
---|
| 39 | _m = new base_mat( _m->Row, _m->Col, _m->Val); |
---|
| 40 | } |
---|
| 41 | |
---|
| 42 | // destructor |
---|
[3327] | 43 | Matrix::~Matrix () |
---|
[3326] | 44 | { |
---|
| 45 | if (--_m->Refcnt == 0) delete _m; |
---|
| 46 | } |
---|
| 47 | |
---|
| 48 | // assignment operator |
---|
[3327] | 49 | Matrix& Matrix::operator = (const Matrix& m) |
---|
[3326] | 50 | { |
---|
| 51 | m._m->Refcnt++; |
---|
| 52 | if (--_m->Refcnt == 0) delete _m; |
---|
| 53 | _m = m._m; |
---|
| 54 | return *this; |
---|
| 55 | } |
---|
| 56 | |
---|
| 57 | // reallocation method |
---|
[3327] | 58 | void Matrix::realloc (size_t row, size_t col) |
---|
[3326] | 59 | { |
---|
| 60 | if (row == _m->RowSiz && col == _m->ColSiz) |
---|
| 61 | { |
---|
| 62 | _m->Row = _m->RowSiz; |
---|
| 63 | _m->Col = _m->ColSiz; |
---|
| 64 | return; |
---|
| 65 | } |
---|
| 66 | |
---|
| 67 | base_mat *m1 = new base_mat( row, col, NULL); |
---|
| 68 | size_t colSize = min(_m->Col,col) * sizeof(float); |
---|
| 69 | size_t minRow = min(_m->Row,row); |
---|
| 70 | |
---|
| 71 | for (size_t i=0; i < minRow; i++) |
---|
| 72 | memcpy( m1->Val[i], _m->Val[i], colSize); |
---|
| 73 | |
---|
| 74 | if (--_m->Refcnt == 0) |
---|
| 75 | delete _m; |
---|
| 76 | _m = m1; |
---|
| 77 | |
---|
| 78 | return; |
---|
| 79 | } |
---|
| 80 | |
---|
| 81 | // public method for resizing Matrix |
---|
[3327] | 82 | void Matrix::SetSize (size_t row, size_t col) |
---|
[3326] | 83 | { |
---|
| 84 | size_t i,j; |
---|
| 85 | size_t oldRow = _m->Row; |
---|
| 86 | size_t oldCol = _m->Col; |
---|
| 87 | |
---|
| 88 | if (row != _m->RowSiz || col != _m->ColSiz) |
---|
| 89 | realloc( row, col); |
---|
| 90 | |
---|
| 91 | for (i=oldRow; i < row; i++) |
---|
| 92 | for (j=0; j < col; j++) |
---|
| 93 | _m->Val[i][j] = float(0); |
---|
| 94 | |
---|
| 95 | for (i=0; i < row; i++) |
---|
| 96 | for (j=oldCol; j < col; j++) |
---|
| 97 | _m->Val[i][j] = float(0); |
---|
| 98 | |
---|
| 99 | return; |
---|
| 100 | } |
---|
| 101 | |
---|
| 102 | // subscript operator to get/set individual elements |
---|
[3327] | 103 | float& Matrix::operator () (size_t row, size_t col) |
---|
[3326] | 104 | { |
---|
| 105 | if (row >= _m->Row || col >= _m->Col) |
---|
| 106 | printf( "Matrix::operator(): Index out of range!\n"); |
---|
| 107 | if (_m->Refcnt > 1) clone(); |
---|
| 108 | return _m->Val[row][col]; |
---|
| 109 | } |
---|
| 110 | |
---|
| 111 | // subscript operator to get/set individual elements |
---|
[3327] | 112 | float Matrix::operator () (size_t row, size_t col) const |
---|
[3326] | 113 | { |
---|
| 114 | if (row >= _m->Row || col >= _m->Col) |
---|
| 115 | printf( "Matrix::operator(): Index out of range!\n"); |
---|
| 116 | return _m->Val[row][col]; |
---|
| 117 | } |
---|
| 118 | |
---|
| 119 | // input stream function |
---|
[3327] | 120 | istream& operator >> (istream& istrm, Matrix& m) |
---|
[3326] | 121 | { |
---|
| 122 | for (size_t i=0; i < m.RowNo(); i++) |
---|
| 123 | for (size_t j=0; j < m.ColNo(); j++) |
---|
| 124 | { |
---|
| 125 | float x; |
---|
| 126 | istrm >> x; |
---|
| 127 | m(i,j) = x; |
---|
| 128 | } |
---|
| 129 | return istrm; |
---|
| 130 | } |
---|
| 131 | |
---|
| 132 | // output stream function |
---|
[3327] | 133 | ostream& operator << (ostream& ostrm, const Matrix& m) |
---|
[3326] | 134 | { |
---|
| 135 | for (size_t i=0; i < m.RowNo(); i++) |
---|
| 136 | { |
---|
| 137 | for (size_t j=0; j < m.ColNo(); j++) |
---|
| 138 | { |
---|
| 139 | float x = m(i,j); |
---|
| 140 | ostrm << x << '\t'; |
---|
| 141 | } |
---|
| 142 | ostrm << endl; |
---|
| 143 | } |
---|
| 144 | return ostrm; |
---|
| 145 | } |
---|
| 146 | |
---|
| 147 | |
---|
| 148 | // logical equal-to operator |
---|
[3327] | 149 | bool operator == (const Matrix& m1, const Matrix& m2) |
---|
[3326] | 150 | { |
---|
| 151 | if (m1.RowNo() != m2.RowNo() || m1.ColNo() != m2.ColNo()) |
---|
| 152 | return false; |
---|
| 153 | |
---|
| 154 | for (size_t i=0; i < m1.RowNo(); i++) |
---|
| 155 | for (size_t j=0; j < m1.ColNo(); j++) |
---|
| 156 | if (m1(i,j) != m2(i,j)) |
---|
| 157 | return false; |
---|
| 158 | |
---|
| 159 | return true; |
---|
| 160 | } |
---|
| 161 | |
---|
| 162 | // logical no-equal-to operator |
---|
[3327] | 163 | bool operator != (const Matrix& m1, const Matrix& m2) |
---|
[3326] | 164 | { |
---|
| 165 | return (m1 == m2) ? false : true; |
---|
| 166 | } |
---|
| 167 | |
---|
| 168 | // combined addition and assignment operator |
---|
[3327] | 169 | Matrix& Matrix::operator += (const Matrix& m) |
---|
[3326] | 170 | { |
---|
| 171 | if (_m->Row != m._m->Row || _m->Col != m._m->Col) |
---|
| 172 | printf("Matrix::operator+= : Inconsistent Matrix sizes in addition!\n"); |
---|
| 173 | if (_m->Refcnt > 1) clone(); |
---|
| 174 | for (size_t i=0; i < m._m->Row; i++) |
---|
| 175 | for (size_t j=0; j < m._m->Col; j++) |
---|
| 176 | _m->Val[i][j] += m._m->Val[i][j]; |
---|
| 177 | return *this; |
---|
| 178 | } |
---|
| 179 | |
---|
| 180 | // combined subtraction and assignment operator |
---|
[3327] | 181 | Matrix& Matrix::operator -= (const Matrix& m) |
---|
[3326] | 182 | { |
---|
| 183 | if (_m->Row != m._m->Row || _m->Col != m._m->Col) |
---|
| 184 | printf( "Matrix::operator-= : Inconsistent Matrix sizes in subtraction!\n"); |
---|
| 185 | if (_m->Refcnt > 1) clone(); |
---|
| 186 | for (size_t i=0; i < m._m->Row; i++) |
---|
| 187 | for (size_t j=0; j < m._m->Col; j++) |
---|
| 188 | _m->Val[i][j] -= m._m->Val[i][j]; |
---|
| 189 | return *this; |
---|
| 190 | } |
---|
| 191 | |
---|
| 192 | // combined scalar multiplication and assignment operator |
---|
[3327] | 193 | Matrix& |
---|
[3326] | 194 | Matrix::operator *= (const float& c) |
---|
| 195 | { |
---|
| 196 | if (_m->Refcnt > 1) clone(); |
---|
| 197 | for (size_t i=0; i < _m->Row; i++) |
---|
| 198 | for (size_t j=0; j < _m->Col; j++) |
---|
| 199 | _m->Val[i][j] *= c; |
---|
| 200 | return *this; |
---|
| 201 | } |
---|
| 202 | |
---|
| 203 | // combined Matrix multiplication and assignment operator |
---|
[3327] | 204 | Matrix& |
---|
[3326] | 205 | Matrix::operator *= (const Matrix& m) |
---|
| 206 | { |
---|
| 207 | if (_m->Col != m._m->Row) |
---|
| 208 | printf( "Matrix::operator*= : Inconsistent Matrix sizes in multiplication!\n"); |
---|
| 209 | |
---|
| 210 | Matrix temp(_m->Row,m._m->Col); |
---|
| 211 | |
---|
| 212 | for (size_t i=0; i < _m->Row; i++) |
---|
| 213 | for (size_t j=0; j < m._m->Col; j++) |
---|
| 214 | { |
---|
| 215 | temp._m->Val[i][j] = float(0); |
---|
| 216 | for (size_t k=0; k < _m->Col; k++) |
---|
| 217 | temp._m->Val[i][j] += _m->Val[i][k] * m._m->Val[k][j]; |
---|
| 218 | } |
---|
| 219 | *this = temp; |
---|
| 220 | |
---|
| 221 | return *this; |
---|
| 222 | } |
---|
| 223 | |
---|
| 224 | // combined scalar division and assignment operator |
---|
[3327] | 225 | Matrix& |
---|
[3326] | 226 | Matrix::operator /= (const float& c) |
---|
| 227 | { |
---|
| 228 | if (_m->Refcnt > 1) clone(); |
---|
| 229 | for (size_t i=0; i < _m->Row; i++) |
---|
| 230 | for (size_t j=0; j < _m->Col; j++) |
---|
| 231 | _m->Val[i][j] /= c; |
---|
| 232 | |
---|
| 233 | return *this; |
---|
| 234 | } |
---|
| 235 | |
---|
| 236 | // combined power and assignment operator |
---|
[3327] | 237 | Matrix& |
---|
[3326] | 238 | Matrix::operator ^= (const size_t& pow) |
---|
| 239 | { |
---|
| 240 | Matrix temp(*this); |
---|
| 241 | |
---|
| 242 | for (size_t i=2; i <= pow; i++) |
---|
| 243 | *this *= temp; // changed from *this = *this * temp; |
---|
| 244 | |
---|
| 245 | return *this; |
---|
| 246 | } |
---|
| 247 | |
---|
| 248 | // unary negation operator |
---|
[3327] | 249 | Matrix |
---|
[3326] | 250 | Matrix::operator - () |
---|
| 251 | { |
---|
| 252 | Matrix temp(_m->Row,_m->Col); |
---|
| 253 | |
---|
| 254 | for (size_t i=0; i < _m->Row; i++) |
---|
| 255 | for (size_t j=0; j < _m->Col; j++) |
---|
| 256 | temp._m->Val[i][j] = - _m->Val[i][j]; |
---|
| 257 | |
---|
| 258 | return temp; |
---|
| 259 | } |
---|
| 260 | |
---|
| 261 | // binary addition operator |
---|
[3327] | 262 | Matrix |
---|
[3326] | 263 | operator + (const Matrix& m1, const Matrix& m2) |
---|
| 264 | { |
---|
| 265 | Matrix temp = m1; |
---|
| 266 | temp += m2; |
---|
| 267 | return temp; |
---|
| 268 | } |
---|
| 269 | |
---|
| 270 | // binary subtraction operator |
---|
[3327] | 271 | Matrix |
---|
[3326] | 272 | operator - (const Matrix& m1, const Matrix& m2) |
---|
| 273 | { |
---|
| 274 | Matrix temp = m1; |
---|
| 275 | temp -= m2; |
---|
| 276 | return temp; |
---|
| 277 | } |
---|
| 278 | |
---|
| 279 | // binary scalar multiplication operator |
---|
[3327] | 280 | Matrix |
---|
[3326] | 281 | operator * (const Matrix& m, const float& no) |
---|
| 282 | { |
---|
| 283 | Matrix temp = m; |
---|
| 284 | temp *= no; |
---|
| 285 | return temp; |
---|
| 286 | } |
---|
| 287 | |
---|
| 288 | |
---|
| 289 | // binary scalar multiplication operator |
---|
[3327] | 290 | Matrix |
---|
[3326] | 291 | operator * (const float& no, const Matrix& m) |
---|
| 292 | { |
---|
| 293 | return (m * no); |
---|
| 294 | } |
---|
| 295 | |
---|
| 296 | // binary Matrix multiplication operator |
---|
[3327] | 297 | Matrix |
---|
[3326] | 298 | operator * (const Matrix& m1, const Matrix& m2) |
---|
| 299 | { |
---|
| 300 | Matrix temp = m1; |
---|
| 301 | temp *= m2; |
---|
| 302 | return temp; |
---|
| 303 | } |
---|
| 304 | |
---|
| 305 | // binary scalar division operator |
---|
[3327] | 306 | Matrix |
---|
[3326] | 307 | operator / (const Matrix& m, const float& no) |
---|
| 308 | { |
---|
| 309 | return (m * (float(1) / no)); |
---|
| 310 | } |
---|
| 311 | |
---|
| 312 | |
---|
| 313 | // binary scalar division operator |
---|
[3327] | 314 | Matrix |
---|
[3326] | 315 | operator / (const float& no, const Matrix& m) |
---|
| 316 | { |
---|
| 317 | return (!m * no); |
---|
| 318 | } |
---|
| 319 | |
---|
| 320 | // binary Matrix division operator |
---|
[3327] | 321 | Matrix |
---|
[3326] | 322 | operator / (const Matrix& m1, const Matrix& m2) |
---|
| 323 | { |
---|
| 324 | return (m1 * !m2); |
---|
| 325 | } |
---|
| 326 | |
---|
| 327 | // binary power operator |
---|
[3327] | 328 | Matrix |
---|
[3326] | 329 | operator ^ (const Matrix& m, const size_t& pow) |
---|
| 330 | { |
---|
| 331 | Matrix temp = m; |
---|
| 332 | temp ^= pow; |
---|
| 333 | return temp; |
---|
| 334 | } |
---|
| 335 | |
---|
| 336 | // unary transpose operator |
---|
[3327] | 337 | Matrix |
---|
[3326] | 338 | operator ~ (const Matrix& m) |
---|
| 339 | { |
---|
| 340 | Matrix temp(m.ColNo(),m.RowNo()); |
---|
| 341 | |
---|
| 342 | for (size_t i=0; i < m.RowNo(); i++) |
---|
| 343 | for (size_t j=0; j < m.ColNo(); j++) |
---|
| 344 | { |
---|
| 345 | float x = m(i,j); |
---|
| 346 | temp(j,i) = x; |
---|
| 347 | } |
---|
| 348 | return temp; |
---|
| 349 | } |
---|
| 350 | |
---|
| 351 | // unary inversion operator |
---|
[3327] | 352 | Matrix |
---|
[3326] | 353 | operator ! (const Matrix m) |
---|
| 354 | { |
---|
| 355 | Matrix temp = m; |
---|
| 356 | return temp.Inv(); |
---|
| 357 | } |
---|
| 358 | |
---|
| 359 | // inversion function |
---|
[3327] | 360 | Matrix |
---|
[3326] | 361 | Matrix::Inv () |
---|
| 362 | { |
---|
| 363 | size_t i,j,k; |
---|
| 364 | float a1,a2,*rowptr; |
---|
| 365 | |
---|
| 366 | if (_m->Row != _m->Col) |
---|
| 367 | printf( "Matrix::operator!: Inversion of a non-square Matrix\n"); |
---|
| 368 | |
---|
| 369 | Matrix temp(_m->Row,_m->Col); |
---|
| 370 | if (_m->Refcnt > 1) clone(); |
---|
| 371 | |
---|
| 372 | |
---|
| 373 | temp.Unit(); |
---|
| 374 | for (k=0; k < _m->Row; k++) |
---|
| 375 | { |
---|
| 376 | int indx = pivot(k); |
---|
| 377 | if (indx == -1) |
---|
| 378 | printf( "Matrix::operator!: Inversion of a singular Matrix\n"); |
---|
| 379 | |
---|
| 380 | if (indx != 0) |
---|
| 381 | { |
---|
| 382 | rowptr = temp._m->Val[k]; |
---|
| 383 | temp._m->Val[k] = temp._m->Val[indx]; |
---|
| 384 | temp._m->Val[indx] = rowptr; |
---|
| 385 | } |
---|
| 386 | a1 = _m->Val[k][k]; |
---|
| 387 | for (j=0; j < _m->Row; j++) |
---|
| 388 | { |
---|
| 389 | _m->Val[k][j] /= a1; |
---|
| 390 | temp._m->Val[k][j] /= a1; |
---|
| 391 | } |
---|
| 392 | for (i=0; i < _m->Row; i++) |
---|
| 393 | if (i != k) |
---|
| 394 | { |
---|
| 395 | a2 = _m->Val[i][k]; |
---|
| 396 | for (j=0; j < _m->Row; j++) |
---|
| 397 | { |
---|
| 398 | _m->Val[i][j] -= a2 * _m->Val[k][j]; |
---|
| 399 | temp._m->Val[i][j] -= a2 * temp._m->Val[k][j]; |
---|
| 400 | } |
---|
| 401 | } |
---|
| 402 | } |
---|
| 403 | return temp; |
---|
| 404 | } |
---|
| 405 | |
---|
| 406 | // solve simultaneous equation |
---|
[3327] | 407 | Matrix |
---|
[3326] | 408 | Matrix::Solve (const Matrix& v) const |
---|
| 409 | { |
---|
| 410 | size_t i,j,k; |
---|
| 411 | float a1; |
---|
| 412 | |
---|
| 413 | if (!(_m->Row == _m->Col && _m->Col == v._m->Row)) |
---|
| 414 | printf( "Matrix::Solve():Inconsistent matrices!\n"); |
---|
| 415 | |
---|
| 416 | Matrix temp(_m->Row,_m->Col+v._m->Col); |
---|
| 417 | for (i=0; i < _m->Row; i++) |
---|
| 418 | { |
---|
| 419 | for (j=0; j < _m->Col; j++) |
---|
| 420 | temp._m->Val[i][j] = _m->Val[i][j]; |
---|
| 421 | for (k=0; k < v._m->Col; k++) |
---|
| 422 | temp._m->Val[i][_m->Col+k] = v._m->Val[i][k]; |
---|
| 423 | } |
---|
| 424 | for (k=0; k < _m->Row; k++) |
---|
| 425 | { |
---|
| 426 | int indx = temp.pivot(k); |
---|
| 427 | if (indx == -1) |
---|
| 428 | printf( "Matrix::Solve(): Singular Matrix!\n"); |
---|
| 429 | |
---|
| 430 | a1 = temp._m->Val[k][k]; |
---|
| 431 | for (j=k; j < temp._m->Col; j++) |
---|
| 432 | temp._m->Val[k][j] /= a1; |
---|
| 433 | |
---|
| 434 | for (i=k+1; i < _m->Row; i++) |
---|
| 435 | { |
---|
| 436 | a1 = temp._m->Val[i][k]; |
---|
| 437 | for (j=k; j < temp._m->Col; j++) |
---|
| 438 | temp._m->Val[i][j] -= a1 * temp._m->Val[k][j]; |
---|
| 439 | } |
---|
| 440 | } |
---|
| 441 | Matrix s(v._m->Row,v._m->Col); |
---|
| 442 | for (k=0; k < v._m->Col; k++) |
---|
| 443 | for (int m=int(_m->Row)-1; m >= 0; m--) |
---|
| 444 | { |
---|
| 445 | s._m->Val[m][k] = temp._m->Val[m][_m->Col+k]; |
---|
| 446 | for (j=m+1; j < _m->Col; j++) |
---|
| 447 | s._m->Val[m][k] -= temp._m->Val[m][j] * s._m->Val[j][k]; |
---|
| 448 | } |
---|
| 449 | return s; |
---|
| 450 | } |
---|
| 451 | |
---|
| 452 | // set zero to all elements of this Matrix |
---|
[3327] | 453 | void |
---|
[3326] | 454 | Matrix::Null (const size_t& row, const size_t& col) |
---|
| 455 | { |
---|
| 456 | if (row != _m->Row || col != _m->Col) |
---|
| 457 | realloc( row,col); |
---|
| 458 | |
---|
| 459 | if (_m->Refcnt > 1) |
---|
| 460 | clone(); |
---|
| 461 | |
---|
| 462 | for (size_t i=0; i < _m->Row; i++) |
---|
| 463 | for (size_t j=0; j < _m->Col; j++) |
---|
| 464 | _m->Val[i][j] = float(0); |
---|
| 465 | return; |
---|
| 466 | } |
---|
| 467 | |
---|
| 468 | // set zero to all elements of this Matrix |
---|
[3327] | 469 | void |
---|
[3326] | 470 | Matrix::Null() |
---|
| 471 | { |
---|
| 472 | if (_m->Refcnt > 1) clone(); |
---|
| 473 | for (size_t i=0; i < _m->Row; i++) |
---|
| 474 | for (size_t j=0; j < _m->Col; j++) |
---|
| 475 | _m->Val[i][j] = float(0); |
---|
| 476 | return; |
---|
| 477 | } |
---|
| 478 | |
---|
| 479 | // set this Matrix to unity |
---|
[3327] | 480 | void |
---|
[3326] | 481 | Matrix::Unit (const size_t& row) |
---|
| 482 | { |
---|
| 483 | if (row != _m->Row || row != _m->Col) |
---|
| 484 | realloc( row, row); |
---|
| 485 | |
---|
| 486 | if (_m->Refcnt > 1) |
---|
| 487 | clone(); |
---|
| 488 | |
---|
| 489 | for (size_t i=0; i < _m->Row; i++) |
---|
| 490 | for (size_t j=0; j < _m->Col; j++) |
---|
| 491 | _m->Val[i][j] = i == j ? float(1) : float(0); |
---|
| 492 | return; |
---|
| 493 | } |
---|
| 494 | |
---|
| 495 | // set this Matrix to unity |
---|
[3327] | 496 | void |
---|
[3326] | 497 | Matrix::Unit () |
---|
| 498 | { |
---|
| 499 | if (_m->Refcnt > 1) clone(); |
---|
| 500 | size_t row = min(_m->Row,_m->Col); |
---|
| 501 | _m->Row = _m->Col = row; |
---|
| 502 | |
---|
| 503 | for (size_t i=0; i < _m->Row; i++) |
---|
| 504 | for (size_t j=0; j < _m->Col; j++) |
---|
| 505 | _m->Val[i][j] = i == j ? float(1) : float(0); |
---|
| 506 | return; |
---|
| 507 | } |
---|
| 508 | |
---|
| 509 | // private partial pivoting method |
---|
[3327] | 510 | int |
---|
[3326] | 511 | Matrix::pivot (size_t row) |
---|
| 512 | { |
---|
| 513 | int k = int(row); |
---|
| 514 | double amax,temp; |
---|
| 515 | |
---|
| 516 | amax = -1; |
---|
| 517 | for (size_t i=row; i < _m->Row; i++) |
---|
| 518 | if ( (temp = abs( _m->Val[i][row])) > amax && temp != 0.0) |
---|
| 519 | { |
---|
| 520 | amax = temp; |
---|
| 521 | k = i; |
---|
| 522 | } |
---|
| 523 | if (_m->Val[k][row] == float(0)) |
---|
| 524 | return -1; |
---|
| 525 | if (k != int(row)) |
---|
| 526 | { |
---|
| 527 | float* rowptr = _m->Val[k]; |
---|
| 528 | _m->Val[k] = _m->Val[row]; |
---|
| 529 | _m->Val[row] = rowptr; |
---|
| 530 | return k; |
---|
| 531 | } |
---|
| 532 | return 0; |
---|
| 533 | } |
---|
| 534 | |
---|
| 535 | // calculate the determinant of a Matrix |
---|
[3327] | 536 | float |
---|
[3326] | 537 | Matrix::Det () const |
---|
| 538 | { |
---|
| 539 | size_t i,j,k; |
---|
| 540 | float piv,detVal = float(1); |
---|
| 541 | |
---|
| 542 | if (_m->Row != _m->Col) |
---|
| 543 | printf( "Matrix::Det(): Determinant a non-squareMatrix!\n"); |
---|
| 544 | |
---|
| 545 | Matrix temp(*this); |
---|
| 546 | if (temp._m->Refcnt > 1) temp.clone(); |
---|
| 547 | |
---|
| 548 | for (k=0; k < _m->Row; k++) |
---|
| 549 | { |
---|
| 550 | int indx = temp.pivot(k); |
---|
| 551 | if (indx == -1) |
---|
| 552 | return 0; |
---|
| 553 | if (indx != 0) |
---|
| 554 | detVal = - detVal; |
---|
| 555 | detVal = detVal * temp._m->Val[k][k]; |
---|
| 556 | for (i=k+1; i < _m->Row; i++) |
---|
| 557 | { |
---|
| 558 | piv = temp._m->Val[i][k] / temp._m->Val[k][k]; |
---|
| 559 | for (j=k+1; j < _m->Row; j++) |
---|
| 560 | temp._m->Val[i][j] -= piv * temp._m->Val[k][j]; |
---|
| 561 | } |
---|
| 562 | } |
---|
| 563 | return detVal; |
---|
| 564 | } |
---|
| 565 | |
---|
| 566 | // calculate the norm of a Matrix |
---|
[3327] | 567 | float |
---|
[3326] | 568 | Matrix::Norm () |
---|
| 569 | { |
---|
| 570 | float retVal = float(0); |
---|
| 571 | |
---|
| 572 | for (size_t i=0; i < _m->Row; i++) |
---|
| 573 | for (size_t j=0; j < _m->Col; j++) |
---|
| 574 | retVal += _m->Val[i][j] * _m->Val[i][j]; |
---|
| 575 | retVal = sqrt( retVal); |
---|
| 576 | |
---|
| 577 | return retVal; |
---|
| 578 | } |
---|
| 579 | |
---|
| 580 | // calculate the condition number of a Matrix |
---|
[3327] | 581 | float |
---|
[3326] | 582 | Matrix::Cond () |
---|
| 583 | { |
---|
| 584 | Matrix inv = ! (*this); |
---|
| 585 | return (Norm() * inv.Norm()); |
---|
| 586 | } |
---|
| 587 | |
---|
| 588 | // calculate the cofactor of a Matrix for a given element |
---|
[3327] | 589 | float |
---|
[3326] | 590 | Matrix::Cofact (size_t row, size_t col) |
---|
| 591 | { |
---|
| 592 | size_t i,i1,j,j1; |
---|
| 593 | |
---|
| 594 | if (_m->Row != _m->Col) |
---|
| 595 | printf( "Matrix::Cofact(): Cofactor of a non-square Matrix!\n"); |
---|
| 596 | |
---|
| 597 | if (row > _m->Row || col > _m->Col) |
---|
| 598 | printf( "Matrix::Cofact(): Index out of range!\n"); |
---|
| 599 | |
---|
| 600 | Matrix temp (_m->Row-1,_m->Col-1); |
---|
| 601 | |
---|
| 602 | for (i=i1=0; i < _m->Row; i++) |
---|
| 603 | { |
---|
| 604 | if (i == row) |
---|
| 605 | continue; |
---|
| 606 | for (j=j1=0; j < _m->Col; j++) |
---|
| 607 | { |
---|
| 608 | if (j == col) |
---|
| 609 | continue; |
---|
| 610 | temp._m->Val[i1][j1] = _m->Val[i][j]; |
---|
| 611 | j1++; |
---|
| 612 | } |
---|
| 613 | i1++; |
---|
| 614 | } |
---|
| 615 | float cof = temp.Det(); |
---|
| 616 | if ((row+col)%2 == 1) |
---|
| 617 | cof = -cof; |
---|
| 618 | |
---|
| 619 | return cof; |
---|
| 620 | } |
---|
| 621 | |
---|
| 622 | |
---|
| 623 | // calculate adjoin of a Matrix |
---|
[3327] | 624 | Matrix |
---|
[3326] | 625 | Matrix::Adj () |
---|
| 626 | { |
---|
| 627 | if (_m->Row != _m->Col) |
---|
| 628 | printf( "Matrix::Adj(): Adjoin of a non-square Matrix.\n"); |
---|
| 629 | |
---|
| 630 | Matrix temp(_m->Row,_m->Col); |
---|
| 631 | |
---|
| 632 | for (size_t i=0; i < _m->Row; i++) |
---|
| 633 | for (size_t j=0; j < _m->Col; j++) |
---|
| 634 | temp._m->Val[j][i] = Cofact(i,j); |
---|
| 635 | return temp; |
---|
| 636 | } |
---|
| 637 | |
---|
| 638 | // Determine if the Matrix is singular |
---|
[3327] | 639 | bool |
---|
[3326] | 640 | Matrix::IsSingular () |
---|
| 641 | { |
---|
| 642 | if (_m->Row != _m->Col) |
---|
| 643 | return false; |
---|
| 644 | return (Det() == float(0)); |
---|
| 645 | } |
---|
| 646 | |
---|
| 647 | // Determine if the Matrix is diagonal |
---|
[3327] | 648 | bool |
---|
[3326] | 649 | Matrix::IsDiagonal () |
---|
| 650 | { |
---|
| 651 | if (_m->Row != _m->Col) |
---|
| 652 | return false; |
---|
| 653 | for (size_t i=0; i < _m->Row; i++) |
---|
| 654 | for (size_t j=0; j < _m->Col; j++) |
---|
| 655 | if (i != j && _m->Val[i][j] != float(0)) |
---|
| 656 | return false; |
---|
| 657 | return true; |
---|
| 658 | } |
---|
| 659 | |
---|
| 660 | // Determine if the Matrix is scalar |
---|
[3327] | 661 | bool |
---|
[3326] | 662 | Matrix::IsScalar () |
---|
| 663 | { |
---|
| 664 | if (!IsDiagonal()) |
---|
| 665 | return false; |
---|
| 666 | float v = _m->Val[0][0]; |
---|
| 667 | for (size_t i=1; i < _m->Row; i++) |
---|
| 668 | if (_m->Val[i][i] != v) |
---|
| 669 | return false; |
---|
| 670 | return true; |
---|
| 671 | } |
---|
| 672 | |
---|
| 673 | // Determine if the Matrix is a unit Matrix |
---|
[3327] | 674 | bool |
---|
[3326] | 675 | Matrix::IsUnit () |
---|
| 676 | { |
---|
| 677 | if (IsScalar() && _m->Val[0][0] == float(1)) |
---|
| 678 | return true; |
---|
| 679 | return false; |
---|
| 680 | } |
---|
| 681 | |
---|
| 682 | // Determine if this is a null Matrix |
---|
[3327] | 683 | bool |
---|
[3326] | 684 | Matrix::IsNull () |
---|
| 685 | { |
---|
| 686 | for (size_t i=0; i < _m->Row; i++) |
---|
| 687 | for (size_t j=0; j < _m->Col; j++) |
---|
| 688 | if (_m->Val[i][j] != float(0)) |
---|
| 689 | return false; |
---|
| 690 | return true; |
---|
| 691 | } |
---|
| 692 | |
---|
| 693 | // Determine if the Matrix is symmetric |
---|
[3327] | 694 | bool |
---|
[3326] | 695 | Matrix::IsSymmetric () |
---|
| 696 | { |
---|
| 697 | if (_m->Row != _m->Col) |
---|
| 698 | return false; |
---|
| 699 | for (size_t i=0; i < _m->Row; i++) |
---|
| 700 | for (size_t j=0; j < _m->Col; j++) |
---|
| 701 | if (_m->Val[i][j] != _m->Val[j][i]) |
---|
| 702 | return false; |
---|
| 703 | return true; |
---|
| 704 | } |
---|
| 705 | |
---|
| 706 | // Determine if the Matrix is skew-symmetric |
---|
[3327] | 707 | bool |
---|
[3326] | 708 | Matrix::IsSkewSymmetric () |
---|
| 709 | { |
---|
| 710 | if (_m->Row != _m->Col) |
---|
| 711 | return false; |
---|
| 712 | for (size_t i=0; i < _m->Row; i++) |
---|
| 713 | for (size_t j=0; j < _m->Col; j++) |
---|
| 714 | if (_m->Val[i][j] != -_m->Val[j][i]) |
---|
| 715 | return false; |
---|
| 716 | return true; |
---|
| 717 | } |
---|
| 718 | |
---|
| 719 | // Determine if the Matrix is upper triangular |
---|
[3327] | 720 | bool |
---|
[3326] | 721 | Matrix::IsUpperTriangular () |
---|
| 722 | { |
---|
| 723 | if (_m->Row != _m->Col) |
---|
| 724 | return false; |
---|
| 725 | for (size_t i=1; i < _m->Row; i++) |
---|
| 726 | for (size_t j=0; j < i-1; j++) |
---|
| 727 | if (_m->Val[i][j] != float(0)) |
---|
| 728 | return false; |
---|
| 729 | return true; |
---|
| 730 | } |
---|
| 731 | |
---|
| 732 | // Determine if the Matrix is lower triangular |
---|
[3327] | 733 | bool |
---|
[3326] | 734 | Matrix::IsLowerTriangular () |
---|
| 735 | { |
---|
| 736 | if (_m->Row != _m->Col) |
---|
| 737 | return false; |
---|
| 738 | |
---|
| 739 | for (size_t j=1; j < _m->Col; j++) |
---|
| 740 | for (size_t i=0; i < j-1; i++) |
---|
| 741 | if (_m->Val[i][j] != float(0)) |
---|
| 742 | return false; |
---|
| 743 | |
---|
| 744 | return true; |
---|
| 745 | } |
---|
| 746 | |
---|