[4565] | 1 | //$$ newmatnl.h definition file for non-linear optimisation |
---|
| 2 | |
---|
| 3 | // Copyright (C) 1993,4,5: R B Davies |
---|
| 4 | |
---|
| 5 | #ifndef NEWMATNL_LIB |
---|
| 6 | #define NEWMATNL_LIB 0 |
---|
| 7 | |
---|
| 8 | #include "newmat.h" |
---|
| 9 | |
---|
| 10 | #ifdef use_namespace |
---|
| 11 | namespace NEWMAT { |
---|
| 12 | #endif |
---|
| 13 | |
---|
| 14 | |
---|
| 15 | |
---|
| 16 | /* |
---|
| 17 | |
---|
| 18 | This is a beginning of a series of classes for non-linear optimisation. |
---|
| 19 | |
---|
| 20 | At present there are two classes. FindMaximum2 is the basic optimisation |
---|
| 21 | strategy when one is doing an optimisation where one has first |
---|
| 22 | derivatives and estimates of the second derivatives. Class |
---|
| 23 | NonLinearLeastSquares is derived from FindMaximum2. This provides the |
---|
| 24 | functions that calculate function values and derivatives. |
---|
| 25 | |
---|
| 26 | A third class is now added. This is for doing maximum-likelihood when |
---|
| 27 | you have first derviatives and something like the Fisher Information |
---|
| 28 | matrix (eg the variance covariance matrix of the first derivatives or |
---|
| 29 | minus the second derivatives - this matrix is assumed to be positive |
---|
| 30 | definite). |
---|
| 31 | |
---|
| 32 | |
---|
| 33 | |
---|
| 34 | class FindMaximum2 |
---|
| 35 | |
---|
| 36 | Suppose T is the ColumnVector of parameters, F(T) the function we want |
---|
| 37 | to maximise, D(T) the ColumnVector of derivatives of F with respect to |
---|
| 38 | T, and S(T) the matrix of second derivatives. |
---|
| 39 | |
---|
| 40 | Then the basic iteration is given a value of T, update it to |
---|
| 41 | |
---|
| 42 | T - S.i() * D |
---|
| 43 | |
---|
| 44 | where .i() denotes inverse. |
---|
| 45 | |
---|
| 46 | If F was quadratic this would give exactly the right answer (except it |
---|
| 47 | might get a minimum rather than a maximum). Since F is not usually |
---|
| 48 | quadratic, the simple procedure would be to recalculate S and D with the |
---|
| 49 | new value of T and keep iterating until the process converges. This is |
---|
| 50 | known as the method of conjugate gradients. |
---|
| 51 | |
---|
| 52 | In practice, this method may not converge. FindMaximum2 considers an |
---|
| 53 | iteration of the form |
---|
| 54 | |
---|
| 55 | T - x * S.i() * D |
---|
| 56 | |
---|
| 57 | where x is a number. It tries x = 1 and uses the values of F and its |
---|
| 58 | slope with respect to x at x = 0 and x = 1 to fit a cubic in x. It then |
---|
| 59 | choses x to maximise the resulting function. This gives our new value of |
---|
| 60 | T. The program checks that the value of F is getting better and carries |
---|
| 61 | out a variety of strategies if it is not. |
---|
| 62 | |
---|
| 63 | The program also has a second strategy. If the successive values of T |
---|
| 64 | seem to be lying along a curve - eg we are following along a curved |
---|
| 65 | ridge, the program will try to fit this ridge and project along it. This |
---|
| 66 | does not work at present and is commented out. |
---|
| 67 | |
---|
| 68 | FindMaximum2 has three virtual functions which need to be over-ridden by |
---|
| 69 | a derived class. |
---|
| 70 | |
---|
| 71 | void Value(const ColumnVector& T, bool wg, Real& f, bool& oorg); |
---|
| 72 | |
---|
| 73 | T is the column vector of parameters. The function returns the value of |
---|
| 74 | the function to f, but may instead set oorg to true if the parameter |
---|
| 75 | values are not valid. If wg is true it may also calculate and store the |
---|
| 76 | second derivative information. |
---|
| 77 | |
---|
| 78 | bool NextPoint(ColumnVector& H, Real& d); |
---|
| 79 | |
---|
| 80 | Using the value of T provided in the previous call of Value, find the |
---|
| 81 | conjugate gradients adjustment to T, that is - S.i() * D. Also return |
---|
| 82 | |
---|
| 83 | d = D.t() * S.i() * D. |
---|
| 84 | |
---|
| 85 | NextPoint should return true if it considers that the process has |
---|
| 86 | converged (d very small) and false otherwise. The previous call of Value |
---|
| 87 | will have set wg to true, so that S will be available. |
---|
| 88 | |
---|
| 89 | Real LastDerivative(const ColumnVector& H); |
---|
| 90 | |
---|
| 91 | Return the scalar product of H and the vector of derivatives at the last |
---|
| 92 | value of T. |
---|
| 93 | |
---|
| 94 | The function Fit is the function that calls the iteration. |
---|
| 95 | |
---|
| 96 | void Fit(ColumnVector&, int); |
---|
| 97 | |
---|
| 98 | The arguments are the trial parameter values as a ColumnVector and the |
---|
| 99 | maximum number of iterations. The program calls a DataException if the |
---|
| 100 | initial parameters are not valid and a ConvergenceException if the |
---|
| 101 | process fails to converge. |
---|
| 102 | |
---|
| 103 | |
---|
| 104 | class NonLinearLeastSquares |
---|
| 105 | |
---|
| 106 | This class is derived from FindMaximum2 and carries out a non-linear |
---|
| 107 | least squares fit. It uses a QR decomposition to carry out the |
---|
| 108 | operations required by FindMaximum2. |
---|
| 109 | |
---|
| 110 | A prototype class R1_Col_I_D is provided. The user needs to derive a |
---|
| 111 | class from this which includes functions the predicted value of each |
---|
| 112 | observation its derivatives. An object from this class has to be |
---|
| 113 | provided to class NonLinearLeastSquares. |
---|
| 114 | |
---|
| 115 | Suppose we observe n normal random variables with the same unknown |
---|
| 116 | variance and such the i-th one has expected value given by f(i,P) |
---|
| 117 | where P is a column vector of unknown parameters and f is a known |
---|
| 118 | function. We wish to estimate P. |
---|
| 119 | |
---|
| 120 | First derive a class from R1_Col_I_D and override Real operator()(int i) |
---|
| 121 | to give the value of the function f in terms of i and the ColumnVector |
---|
| 122 | para defined in class R1_CoL_I_D. Also override ReturnMatrix |
---|
| 123 | Derivatives() to give the derivates of f at para and the value of i |
---|
| 124 | used in the preceeding call to operator(). Return the result as a |
---|
| 125 | RowVector. Construct an object from this class. Suppose in what follows |
---|
| 126 | it is called pred. |
---|
| 127 | |
---|
| 128 | Now constuct a NonLinearLeastSquaresObject accessing pred and optionally |
---|
| 129 | an iteration limit and an accuracy critierion. |
---|
| 130 | |
---|
| 131 | NonLinearLeastSquares NLLS(pred, 1000, 0.0001); |
---|
| 132 | |
---|
| 133 | The accuracy critierion should be somewhat less than one and 0.0001 is |
---|
| 134 | about the smallest sensible value. |
---|
| 135 | |
---|
| 136 | Define a ColumnVector P containing a guess at the value of the unknown |
---|
| 137 | parameter, and a ColumnVector Y containing the unknown data. Call |
---|
| 138 | |
---|
| 139 | NLLS.Fit(Y,P); |
---|
| 140 | |
---|
| 141 | If the process converges, P will contain the estimates of the unknown |
---|
| 142 | parameters. If it does not converge an exception will be generated. |
---|
| 143 | |
---|
| 144 | The following member functions can be called after you have done a fit. |
---|
| 145 | |
---|
| 146 | Real ResidualVariance() const; |
---|
| 147 | |
---|
| 148 | The estimate of the variance of the observations. |
---|
| 149 | |
---|
| 150 | void GetResiduals(ColumnVector& Z) const; |
---|
| 151 | |
---|
| 152 | The residuals of the individual observations. |
---|
| 153 | |
---|
| 154 | void GetStandardErrors(ColumnVector&); |
---|
| 155 | |
---|
| 156 | The standard errors of the observations. |
---|
| 157 | |
---|
| 158 | void GetCorrelations(SymmetricMatrix&); |
---|
| 159 | |
---|
| 160 | The correlations of the observations. |
---|
| 161 | |
---|
| 162 | void GetHatDiagonal(DiagonalMatrix&) const; |
---|
| 163 | |
---|
| 164 | Forms a diagonal matrix of values between 0 and 1. If the i-th value is |
---|
| 165 | larger than, say 0.2, then the i-th data value could have an undue |
---|
| 166 | influence on your estimates. |
---|
| 167 | |
---|
| 168 | |
---|
| 169 | */ |
---|
| 170 | |
---|
| 171 | class FindMaximum2 |
---|
| 172 | { |
---|
| 173 | virtual void Value(const ColumnVector&, bool, Real&, bool&) = 0; |
---|
| 174 | virtual bool NextPoint(ColumnVector&, Real&) = 0; |
---|
| 175 | virtual Real LastDerivative(const ColumnVector&) = 0; |
---|
| 176 | public: |
---|
| 177 | void Fit(ColumnVector&, int); |
---|
| 178 | virtual ~FindMaximum2() {} // to keep gnu happy |
---|
| 179 | }; |
---|
| 180 | |
---|
| 181 | class R1_Col_I_D |
---|
| 182 | { |
---|
| 183 | // The prototype for a Real function of a ColumnVector and an |
---|
| 184 | // integer. |
---|
| 185 | // You need to derive your function from this one and put in your |
---|
| 186 | // function for operator() and Derivatives() at least. |
---|
| 187 | // You may also want to set up a constructor to enter in additional |
---|
| 188 | // parameter values (that will not vary during the solve). |
---|
| 189 | |
---|
| 190 | protected: |
---|
| 191 | ColumnVector para; // Current x value |
---|
| 192 | |
---|
| 193 | public: |
---|
| 194 | virtual bool IsValid() { return true; } |
---|
| 195 | // is the current x value OK |
---|
| 196 | virtual Real operator()(int i) = 0; // i-th function value at current para |
---|
| 197 | virtual void Set(const ColumnVector& X) { para = X; } |
---|
| 198 | // set current para |
---|
| 199 | bool IsValid(const ColumnVector& X) |
---|
| 200 | { Set(X); return IsValid(); } |
---|
| 201 | // set para, check OK |
---|
| 202 | Real operator()(int i, const ColumnVector& X) |
---|
| 203 | { Set(X); return operator()(i); } |
---|
| 204 | // set para, return value |
---|
| 205 | virtual ReturnMatrix Derivatives() = 0; |
---|
| 206 | // return derivatives as RowVector |
---|
| 207 | virtual ~R1_Col_I_D() {} // to keep gnu happy |
---|
| 208 | }; |
---|
| 209 | |
---|
| 210 | |
---|
| 211 | class NonLinearLeastSquares : public FindMaximum2 |
---|
| 212 | { |
---|
| 213 | // these replace the corresponding functions in FindMaximum2 |
---|
| 214 | void Value(const ColumnVector&, bool, Real&, bool&); |
---|
| 215 | bool NextPoint(ColumnVector&, Real&); |
---|
| 216 | Real LastDerivative(const ColumnVector&); |
---|
| 217 | |
---|
| 218 | Matrix X; // the things we need to do the |
---|
| 219 | ColumnVector Y; // QR triangularisation |
---|
| 220 | UpperTriangularMatrix U; // see the write-up in newmata.txt |
---|
| 221 | ColumnVector M; |
---|
| 222 | Real errorvar, criterion; |
---|
| 223 | int n_obs, n_param; |
---|
| 224 | const ColumnVector* DataPointer; |
---|
| 225 | RowVector Derivs; |
---|
| 226 | SymmetricMatrix Covariance; |
---|
| 227 | DiagonalMatrix SE; |
---|
| 228 | R1_Col_I_D& Pred; // Reference to predictor object |
---|
| 229 | int Lim; // maximum number of iterations |
---|
| 230 | |
---|
| 231 | public: |
---|
| 232 | NonLinearLeastSquares(R1_Col_I_D& pred, int lim=1000, Real crit=0.0001) |
---|
| 233 | : criterion(crit), Pred(pred), Lim(lim) {} |
---|
| 234 | void Fit(const ColumnVector&, ColumnVector&); |
---|
| 235 | Real ResidualVariance() const { return errorvar; } |
---|
| 236 | void GetResiduals(ColumnVector& Z) const { Z = Y; } |
---|
| 237 | void GetStandardErrors(ColumnVector&); |
---|
| 238 | void GetCorrelations(SymmetricMatrix&); |
---|
| 239 | void GetHatDiagonal(DiagonalMatrix&) const; |
---|
| 240 | |
---|
| 241 | private: |
---|
| 242 | void MakeCovariance(); |
---|
| 243 | }; |
---|
| 244 | |
---|
| 245 | |
---|
| 246 | // The next class is the prototype class for calculating the |
---|
| 247 | // log-likelihood. |
---|
| 248 | // I assume first derivatives are available and something like the |
---|
| 249 | // Fisher Information or variance/covariance matrix of the first |
---|
| 250 | // derivatives or minus the matrix of second derivatives is |
---|
| 251 | // available. This matrix must be positive definite. |
---|
| 252 | |
---|
| 253 | class LL_D_FI |
---|
| 254 | { |
---|
| 255 | protected: |
---|
| 256 | ColumnVector para; // current parameter values |
---|
| 257 | bool wg; // true if FI matrix wanted |
---|
| 258 | |
---|
| 259 | public: |
---|
| 260 | virtual void Set(const ColumnVector& X) { para = X; } |
---|
| 261 | // set parameter values |
---|
| 262 | virtual void WG(bool wgx) { wg = wgx; } |
---|
| 263 | // set wg |
---|
| 264 | |
---|
| 265 | virtual bool IsValid() { return true; } |
---|
| 266 | // return true is para is OK |
---|
| 267 | bool IsValid(const ColumnVector& X, bool wgx=true) |
---|
| 268 | { Set(X); WG(wgx); return IsValid(); } |
---|
| 269 | |
---|
| 270 | virtual Real LogLikelihood() = 0; // return the loglikelihhod |
---|
| 271 | Real LogLikelihood(const ColumnVector& X, bool wgx=true) |
---|
| 272 | { Set(X); WG(wgx); return LogLikelihood(); } |
---|
| 273 | |
---|
| 274 | virtual ReturnMatrix Derivatives() = 0; |
---|
| 275 | // column vector of derivatives |
---|
| 276 | virtual ReturnMatrix FI() = 0; // Fisher Information matrix |
---|
| 277 | virtual ~LL_D_FI() {} // to keep gnu happy |
---|
| 278 | }; |
---|
| 279 | |
---|
| 280 | // This is the class for doing the maximum likelihood estimation |
---|
| 281 | |
---|
| 282 | class MLE_D_FI : public FindMaximum2 |
---|
| 283 | { |
---|
| 284 | // these replace the corresponding functions in FindMaximum2 |
---|
| 285 | void Value(const ColumnVector&, bool, Real&, bool&); |
---|
| 286 | bool NextPoint(ColumnVector&, Real&); |
---|
| 287 | Real LastDerivative(const ColumnVector&); |
---|
| 288 | |
---|
| 289 | // the things we need for the analysis |
---|
| 290 | LL_D_FI& LL; // reference to log-likelihood |
---|
| 291 | int Lim; // maximum number of iterations |
---|
| 292 | Real Criterion; // convergence criterion |
---|
| 293 | ColumnVector Derivs; // for the derivatives |
---|
| 294 | LowerTriangularMatrix LT; // Cholesky decomposition of FI |
---|
| 295 | SymmetricMatrix Covariance; |
---|
| 296 | DiagonalMatrix SE; |
---|
| 297 | |
---|
| 298 | public: |
---|
| 299 | MLE_D_FI(LL_D_FI& ll, int lim=1000, Real criterion=0.0001) |
---|
| 300 | : LL(ll), Lim(lim), Criterion(criterion) {} |
---|
| 301 | void Fit(ColumnVector& Parameters); |
---|
| 302 | void GetStandardErrors(ColumnVector&); |
---|
| 303 | void GetCorrelations(SymmetricMatrix&); |
---|
| 304 | |
---|
| 305 | private: |
---|
| 306 | void MakeCovariance(); |
---|
| 307 | }; |
---|
| 308 | |
---|
| 309 | |
---|
| 310 | #ifdef use_namespace |
---|
| 311 | } |
---|
| 312 | #endif |
---|
| 313 | |
---|
| 314 | |
---|
| 315 | |
---|
| 316 | #endif |
---|
| 317 | |
---|
| 318 | // body file: newmatnl.cpp |
---|
| 319 | |
---|
| 320 | |
---|
| 321 | |
---|
| 322 | |
---|