[4565] | 1 | //$$svd.cpp singular value decomposition |
---|
| 2 | |
---|
| 3 | // Copyright (C) 1991,2,3,4,5: R B Davies |
---|
| 4 | // Updated 17 July, 1995 |
---|
| 5 | |
---|
| 6 | #define WANT_MATH |
---|
| 7 | |
---|
| 8 | #include "include.h" |
---|
| 9 | #include "newmatap.h" |
---|
| 10 | #include "newmatrm.h" |
---|
| 11 | #include "precisio.h" |
---|
| 12 | |
---|
| 13 | #ifdef use_namespace |
---|
| 14 | namespace NEWMAT { |
---|
| 15 | #endif |
---|
| 16 | |
---|
| 17 | #ifdef DO_REPORT |
---|
| 18 | #define REPORT { static ExeCounter ExeCount(__LINE__,15); ++ExeCount; } |
---|
| 19 | #else |
---|
| 20 | #define REPORT {} |
---|
| 21 | #endif |
---|
| 22 | |
---|
| 23 | |
---|
| 24 | static Real pythag(Real f, Real g, Real& c, Real& s) |
---|
| 25 | // return z=sqrt(f*f+g*g), c=f/z, s=g/z |
---|
| 26 | // set c=1,s=0 if z==0 |
---|
| 27 | // avoid floating point overflow or divide by zero |
---|
| 28 | { |
---|
| 29 | if (f==0 && g==0) { c=1.0; s=0.0; return 0.0; } |
---|
| 30 | Real af = f>=0 ? f : -f; |
---|
| 31 | Real ag = g>=0 ? g : -g; |
---|
| 32 | if (ag<af) |
---|
| 33 | { |
---|
| 34 | REPORT |
---|
| 35 | Real h = g/f; Real sq = sqrt(1.0+h*h); |
---|
| 36 | if (f<0) sq = -sq; // make return value non-negative |
---|
| 37 | c = 1.0/sq; s = h/sq; return sq*f; |
---|
| 38 | } |
---|
| 39 | else |
---|
| 40 | { |
---|
| 41 | REPORT |
---|
| 42 | Real h = f/g; Real sq = sqrt(1.0+h*h); |
---|
| 43 | if (g<0) sq = -sq; |
---|
| 44 | s = 1.0/sq; c = h/sq; return sq*g; |
---|
| 45 | } |
---|
| 46 | } |
---|
| 47 | |
---|
| 48 | |
---|
| 49 | void SVD(const Matrix& A, DiagonalMatrix& Q, Matrix& U, Matrix& V, |
---|
| 50 | bool withU, bool withV) |
---|
| 51 | // from Wilkinson and Reinsch: "Handbook of Automatic Computation" |
---|
| 52 | { |
---|
| 53 | REPORT |
---|
| 54 | Tracer trace("SVD"); |
---|
| 55 | Real eps = FloatingPointPrecision::Epsilon(); |
---|
| 56 | Real tol = FloatingPointPrecision::Minimum()/eps; |
---|
| 57 | |
---|
| 58 | int m = A.Nrows(); int n = A.Ncols(); |
---|
| 59 | if (m<n) |
---|
| 60 | Throw(ProgramException("Want no. Rows >= no. Cols", A)); |
---|
| 61 | if (withV && &U == &V) |
---|
| 62 | Throw(ProgramException("Need different matrices for U and V", U, V)); |
---|
| 63 | U = A; Real g = 0.0; Real f,h; Real x = 0.0; int i; |
---|
| 64 | RowVector E(n); RectMatrixRow EI(E,0); Q.ReSize(n); |
---|
| 65 | RectMatrixCol UCI(U,0); RectMatrixRow URI(U,0,1,n-1); |
---|
| 66 | |
---|
| 67 | if (n) for (i=0;;) |
---|
| 68 | { |
---|
| 69 | EI.First() = g; Real ei = g; EI.Right(); Real s = UCI.SumSquare(); |
---|
| 70 | if (s<tol) { REPORT Q.element(i) = 0.0; } |
---|
| 71 | else |
---|
| 72 | { |
---|
| 73 | REPORT |
---|
| 74 | f = UCI.First(); g = -sign(sqrt(s), f); h = f*g-s; UCI.First() = f-g; |
---|
| 75 | Q.element(i) = g; RectMatrixCol UCJ = UCI; int j=n-i; |
---|
| 76 | while (--j) { UCJ.Right(); UCJ.AddScaled(UCI, (UCI*UCJ)/h); } |
---|
| 77 | } |
---|
| 78 | |
---|
| 79 | s = URI.SumSquare(); |
---|
| 80 | if (s<tol) { REPORT g = 0.0; } |
---|
| 81 | else |
---|
| 82 | { |
---|
| 83 | REPORT |
---|
| 84 | f = URI.First(); g = -sign(sqrt(s), f); URI.First() = f-g; |
---|
| 85 | EI.Divide(URI,f*g-s); RectMatrixRow URJ = URI; int j=m-i; |
---|
| 86 | while (--j) { URJ.Down(); URJ.AddScaled(EI, URI*URJ); } |
---|
| 87 | } |
---|
| 88 | |
---|
| 89 | Real y = fabs(Q.element(i)) + fabs(ei); if (x<y) { REPORT x = y; } |
---|
| 90 | if (++i == n) { REPORT break; } |
---|
| 91 | UCI.DownDiag(); URI.DownDiag(); |
---|
| 92 | } |
---|
| 93 | |
---|
| 94 | if (withV) |
---|
| 95 | { |
---|
| 96 | REPORT |
---|
| 97 | V.ReSize(n,n); V = 0.0; RectMatrixCol VCI(V,n-1,n-1,1); |
---|
| 98 | if (n) { VCI.First() = 1.0; g=E.element(n-1); if (n!=1) URI.UpDiag(); } |
---|
| 99 | for (i=n-2; i>=0; i--) |
---|
| 100 | { |
---|
| 101 | VCI.Left(); |
---|
| 102 | if (g!=0.0) |
---|
| 103 | { |
---|
| 104 | VCI.Divide(URI, URI.First()*g); int j = n-i; |
---|
| 105 | RectMatrixCol VCJ = VCI; |
---|
| 106 | while (--j) { VCJ.Right(); VCJ.AddScaled( VCI, (URI*VCJ) ); } |
---|
| 107 | } |
---|
| 108 | VCI.Zero(); VCI.Up(); VCI.First() = 1.0; g=E.element(i); |
---|
| 109 | if (i==0) break; |
---|
| 110 | URI.UpDiag(); |
---|
| 111 | } |
---|
| 112 | } |
---|
| 113 | |
---|
| 114 | if (withU) |
---|
| 115 | { |
---|
| 116 | REPORT |
---|
| 117 | for (i=n-1; i>=0; i--) |
---|
| 118 | { |
---|
| 119 | g = Q.element(i); URI.Reset(U,i,i+1,n-i-1); URI.Zero(); |
---|
| 120 | if (g!=0.0) |
---|
| 121 | { |
---|
| 122 | h=UCI.First()*g; int j=n-i; RectMatrixCol UCJ = UCI; |
---|
| 123 | while (--j) |
---|
| 124 | { |
---|
| 125 | UCJ.Right(); UCI.Down(); UCJ.Down(); Real s = UCI*UCJ; |
---|
| 126 | UCI.Up(); UCJ.Up(); UCJ.AddScaled(UCI,s/h); |
---|
| 127 | } |
---|
| 128 | UCI.Divide(g); |
---|
| 129 | } |
---|
| 130 | else UCI.Zero(); |
---|
| 131 | UCI.First() += 1.0; |
---|
| 132 | if (i==0) break; |
---|
| 133 | UCI.UpDiag(); |
---|
| 134 | } |
---|
| 135 | } |
---|
| 136 | |
---|
| 137 | eps *= x; |
---|
| 138 | for (int k=n-1; k>=0; k--) |
---|
| 139 | { |
---|
| 140 | Real z = -FloatingPointPrecision::Maximum(); // to keep Gnu happy |
---|
| 141 | Real y; int limit = 50; int l = 0; |
---|
| 142 | while (limit--) |
---|
| 143 | { |
---|
| 144 | Real c, s; int i; int l1=k; bool tfc=false; |
---|
| 145 | for (l=k; l>=0; l--) |
---|
| 146 | { |
---|
| 147 | // if (fabs(E.element(l))<=eps) goto test_f_convergence; |
---|
| 148 | if (fabs(E.element(l))<=eps) { REPORT tfc=true; break; } |
---|
| 149 | if (fabs(Q.element(l-1))<=eps) { REPORT l1=l; break; } |
---|
| 150 | REPORT |
---|
| 151 | } |
---|
| 152 | if (!tfc) |
---|
| 153 | { |
---|
| 154 | REPORT |
---|
| 155 | l=l1; l1=l-1; s = -1.0; c = 0.0; |
---|
| 156 | for (i=l; i<=k; i++) |
---|
| 157 | { |
---|
| 158 | f = - s * E.element(i); E.element(i) *= c; |
---|
| 159 | // if (fabs(f)<=eps) goto test_f_convergence; |
---|
| 160 | if (fabs(f)<=eps) { REPORT break; } |
---|
| 161 | g = Q.element(i); h = pythag(g,f,c,s); Q.element(i) = h; |
---|
| 162 | if (withU) |
---|
| 163 | { |
---|
| 164 | REPORT |
---|
| 165 | RectMatrixCol UCI(U,i); RectMatrixCol UCJ(U,l1); |
---|
| 166 | ComplexScale(UCJ, UCI, c, s); |
---|
| 167 | } |
---|
| 168 | } |
---|
| 169 | } |
---|
| 170 | // test_f_convergence: z = Q.element(k); if (l==k) goto convergence; |
---|
| 171 | z = Q.element(k); if (l==k) { REPORT break; } |
---|
| 172 | |
---|
| 173 | x = Q.element(l); y = Q.element(k-1); |
---|
| 174 | g = E.element(k-1); h = E.element(k); |
---|
| 175 | f = ((y-z)*(y+z) + (g-h)*(g+h)) / (2*h*y); |
---|
| 176 | if (f>1) { REPORT g = f * sqrt(1 + square(1/f)); } |
---|
| 177 | else if (f<-1) { REPORT g = -f * sqrt(1 + square(1/f)); } |
---|
| 178 | else { REPORT g = sqrt(f*f + 1); } |
---|
| 179 | { REPORT f = ((x-z)*(x+z) + h*(y / ((f<0.0) ? f-g : f+g)-h)) / x; } |
---|
| 180 | |
---|
| 181 | c = 1.0; s = 1.0; |
---|
| 182 | for (i=l+1; i<=k; i++) |
---|
| 183 | { |
---|
| 184 | g = E.element(i); y = Q.element(i); h = s*g; g *= c; |
---|
| 185 | z = pythag(f,h,c,s); E.element(i-1) = z; |
---|
| 186 | f = x*c + g*s; g = -x*s + g*c; h = y*s; y *= c; |
---|
| 187 | if (withV) |
---|
| 188 | { |
---|
| 189 | REPORT |
---|
| 190 | RectMatrixCol VCI(V,i); RectMatrixCol VCJ(V,i-1); |
---|
| 191 | ComplexScale(VCI, VCJ, c, s); |
---|
| 192 | } |
---|
| 193 | z = pythag(f,h,c,s); Q.element(i-1) = z; |
---|
| 194 | f = c*g + s*y; x = -s*g + c*y; |
---|
| 195 | if (withU) |
---|
| 196 | { |
---|
| 197 | REPORT |
---|
| 198 | RectMatrixCol UCI(U,i); RectMatrixCol UCJ(U,i-1); |
---|
| 199 | ComplexScale(UCI, UCJ, c, s); |
---|
| 200 | } |
---|
| 201 | } |
---|
| 202 | E.element(l) = 0.0; E.element(k) = f; Q.element(k) = x; |
---|
| 203 | } |
---|
| 204 | if (l!=k) { Throw(ConvergenceException(A)); } |
---|
| 205 | // convergence: |
---|
| 206 | if (z < 0.0) |
---|
| 207 | { |
---|
| 208 | REPORT |
---|
| 209 | Q.element(k) = -z; |
---|
| 210 | if (withV) { RectMatrixCol VCI(V,k); VCI.Negate(); } |
---|
| 211 | } |
---|
| 212 | } |
---|
| 213 | if (withU & withV) SortSV(Q, U, V); |
---|
| 214 | else if (withU) SortSV(Q, U); |
---|
| 215 | else if (withV) SortSV(Q, V); |
---|
| 216 | else SortDescending(Q); |
---|
| 217 | } |
---|
| 218 | |
---|
| 219 | void SVD(const Matrix& A, DiagonalMatrix& D) |
---|
| 220 | { REPORT Matrix U; SVD(A, D, U, U, false, false); } |
---|
| 221 | |
---|
| 222 | |
---|
| 223 | |
---|
| 224 | #ifdef use_namespace |
---|
| 225 | } |
---|
| 226 | #endif |
---|
| 227 | |
---|