[4565] | 1 | |
---|
| 2 | //#define WANT_STREAM |
---|
| 3 | |
---|
| 4 | #include "include.h" |
---|
| 5 | |
---|
| 6 | #include "newmatap.h" |
---|
| 7 | |
---|
| 8 | #include "tmt.h" |
---|
| 9 | |
---|
| 10 | #ifdef use_namespace |
---|
| 11 | using namespace NEWMAT; |
---|
| 12 | #endif |
---|
| 13 | |
---|
| 14 | |
---|
| 15 | |
---|
| 16 | // **************************** test program ****************************** |
---|
| 17 | |
---|
| 18 | |
---|
| 19 | void Transposer(const GenericMatrix& GM1, GenericMatrix&GM2) |
---|
| 20 | { GM2 = GM1.t(); } |
---|
| 21 | |
---|
| 22 | // this is a routine in "Numerical Recipes in C" format |
---|
| 23 | // if R is a row vector, C a column vector and D diagonal |
---|
| 24 | // make matrix DCR |
---|
| 25 | |
---|
| 26 | static void DCR(Real d[], Real c[], int m, Real r[], int n, Real **dcr) |
---|
| 27 | { |
---|
| 28 | int i, j; |
---|
| 29 | for (i = 1; i <= m; i++) for (j = 1; j <= n; j++) |
---|
| 30 | dcr[i][j] = d[i] * c[i] * r[j]; |
---|
| 31 | } |
---|
| 32 | |
---|
| 33 | ReturnMatrix TestReturn(const GeneralMatrix& gm) { return gm; } |
---|
| 34 | |
---|
| 35 | void trymat8() |
---|
| 36 | { |
---|
| 37 | // cout << "\nEighth test of Matrix package\n"; |
---|
| 38 | Tracer et("Eighth test of Matrix package"); |
---|
| 39 | Tracer::PrintTrace(); |
---|
| 40 | |
---|
| 41 | int i; |
---|
| 42 | |
---|
| 43 | |
---|
| 44 | DiagonalMatrix D(6); |
---|
| 45 | for (i=1;i<=6;i++) D(i,i)=i*i+i-10; |
---|
| 46 | DiagonalMatrix D2=D; |
---|
| 47 | Matrix MD=D; |
---|
| 48 | |
---|
| 49 | DiagonalMatrix D1(6); for (i=1;i<=6;i++) D1(i,i)=-100+i*i*i; |
---|
| 50 | Matrix MD1=D1; |
---|
| 51 | Print(Matrix(D*D1-MD*MD1)); |
---|
| 52 | Print(Matrix((-D)*D1+MD*MD1)); |
---|
| 53 | Print(Matrix(D*(-D1)+MD*MD1)); |
---|
| 54 | DiagonalMatrix DX=D; |
---|
| 55 | { |
---|
| 56 | Tracer et1("Stage 1"); |
---|
| 57 | DX=(DX+D1)*DX; Print(Matrix(DX-(MD+MD1)*MD)); |
---|
| 58 | DX=D; |
---|
| 59 | DX=-DX*DX+(DX-(-D1))*((-D1)+DX); |
---|
| 60 | // Matrix MX = Matrix(MD1); |
---|
| 61 | // MD1=DX+(MX.t())*(MX.t()); Print(MD1); |
---|
| 62 | MD1=DX+(Matrix(MD1).t())*(Matrix(MD1).t()); Print(MD1); |
---|
| 63 | DX=D; DX=DX; DX=D2-DX; Print(DiagonalMatrix(DX)); |
---|
| 64 | DX=D; |
---|
| 65 | } |
---|
| 66 | { |
---|
| 67 | Tracer et1("Stage 2"); |
---|
| 68 | D.Release(2); |
---|
| 69 | D1=D; D2=D; |
---|
| 70 | Print(DiagonalMatrix(D1-DX)); |
---|
| 71 | Print(DiagonalMatrix(D2-DX)); |
---|
| 72 | MD1=1.0; |
---|
| 73 | Print(Matrix(MD1-1.0)); |
---|
| 74 | } |
---|
| 75 | { |
---|
| 76 | Tracer et1("Stage 3"); |
---|
| 77 | //GenericMatrix |
---|
| 78 | LowerTriangularMatrix LT(4); |
---|
| 79 | LT << 1 << 2 << 3 << 4 << 5 << 6 << 7 << 8 << 9 << 10; |
---|
| 80 | UpperTriangularMatrix UT = LT.t() * 2.0; |
---|
| 81 | GenericMatrix GM1 = LT; |
---|
| 82 | LowerTriangularMatrix LT1 = GM1-LT; Print(LT1); |
---|
| 83 | GenericMatrix GM2 = GM1; LT1 = GM2; LT1 = LT1-LT; Print(LT1); |
---|
| 84 | GM2 = GM1; LT1 = GM2; LT1 = LT1-LT; Print(LT1); |
---|
| 85 | GM2 = GM1*2; LT1 = GM2; LT1 = LT1-LT*2; Print(LT1); |
---|
| 86 | GM1.Release(); |
---|
| 87 | GM1=GM1; LT1=GM1-LT; Print(LT1); LT1=GM1-LT; Print(LT1); |
---|
| 88 | GM1.Release(); |
---|
| 89 | GM1=GM1*4; LT1=GM1-LT*4; Print(LT1); |
---|
| 90 | LT1=GM1-LT*4; Print(LT1); GM1.CleanUp(); |
---|
| 91 | GM1=LT; GM2=UT; GM1=GM1*GM2; Matrix M=GM1; M=M-LT*UT; Print(M); |
---|
| 92 | Transposer(LT,GM2); LT1 = LT - GM2.t(); Print(LT1); |
---|
| 93 | GM1=LT; Transposer(GM1,GM2); LT1 = LT - GM2.t(); Print(LT1); |
---|
| 94 | GM1 = LT; GM1 = GM1 + GM1; LT1 = LT*2-GM1; Print(LT1); |
---|
| 95 | DiagonalMatrix D; D << LT; GM1 = D; LT1 = GM1; LT1 -= D; Print(LT1); |
---|
| 96 | UpperTriangularMatrix UT1 = GM1; UT1 -= D; Print(UT1); |
---|
| 97 | } |
---|
| 98 | { |
---|
| 99 | Tracer et1("Stage 4"); |
---|
| 100 | // Another test of SVD |
---|
| 101 | Matrix M(12,12); M = 0; |
---|
| 102 | M(1,1) = M(2,2) = M(4,4) = M(6,6) = |
---|
| 103 | M(7,7) = M(8,8) = M(10,10) = M(12,12) = -1; |
---|
| 104 | M(1,6) = M(1,12) = -5.601594; |
---|
| 105 | M(3,6) = M(3,12) = -0.000165; |
---|
| 106 | M(7,6) = M(7,12) = -0.008294; |
---|
| 107 | DiagonalMatrix D; |
---|
| 108 | SVD(M,D); |
---|
| 109 | SortDescending(D); |
---|
| 110 | // answer given by matlab |
---|
| 111 | DiagonalMatrix DX(12); |
---|
| 112 | DX(1) = 8.0461; |
---|
| 113 | DX(2) = DX(3) = DX(4) = DX(5) = DX(6) = DX(7) = 1; |
---|
| 114 | DX(8) = 0.1243; |
---|
| 115 | DX(9) = DX(10) = DX(11) = DX(12) = 0; |
---|
| 116 | D -= DX; Clean(D,0.0001); Print(D); |
---|
| 117 | } |
---|
| 118 | #ifndef DONT_DO_NRIC |
---|
| 119 | { |
---|
| 120 | Tracer et1("Stage 5"); |
---|
| 121 | // test numerical recipes in C interface |
---|
| 122 | DiagonalMatrix D(10); |
---|
| 123 | D << 1 << 4 << 6 << 2 << 1 << 6 << 4 << 7 << 3 << 1; |
---|
| 124 | ColumnVector C(10); |
---|
| 125 | C << 3 << 7 << 5 << 1 << 4 << 2 << 3 << 9 << 1 << 3; |
---|
| 126 | RowVector R(6); |
---|
| 127 | R << 2 << 3 << 5 << 7 << 11 << 13; |
---|
| 128 | nricMatrix M(10, 6); |
---|
| 129 | DCR( D.nric(), C.nric(), 10, R.nric(), 6, M.nric() ); |
---|
| 130 | M -= D * C * R; Print(M); |
---|
| 131 | |
---|
| 132 | D.ReSize(5); |
---|
| 133 | D << 1.25 << 4.75 << 9.5 << 1.25 << 3.75; |
---|
| 134 | C.ReSize(5); |
---|
| 135 | C << 1.5 << 7.5 << 4.25 << 0.0 << 7.25; |
---|
| 136 | R.ReSize(9); |
---|
| 137 | R << 2.5 << 3.25 << 5.5 << 7 << 11.25 << 13.5 << 0.0 << 1.5 << 3.5; |
---|
| 138 | Matrix MX = D * C * R; |
---|
| 139 | M.ReSize(MX); |
---|
| 140 | DCR( D.nric(), C.nric(), 5, R.nric(), 9, M.nric() ); |
---|
| 141 | M -= MX; Print(M); |
---|
| 142 | } |
---|
| 143 | #endif |
---|
| 144 | { |
---|
| 145 | Tracer et1("Stage 6"); |
---|
| 146 | // test dotproduct |
---|
| 147 | DiagonalMatrix test(5); test = 1; |
---|
| 148 | ColumnVector C(10); |
---|
| 149 | C << 3 << 7 << 5 << 1 << 4 << 2 << 3 << 9 << 1 << 3; |
---|
| 150 | RowVector R(10); |
---|
| 151 | R << 2 << 3 << 5 << 7 << 11 << 13 << -3 << -4 << 2 << 4; |
---|
| 152 | test(1) = (R * C).AsScalar() - DotProduct(C, R); |
---|
| 153 | test(2) = C.SumSquare() - DotProduct(C, C); |
---|
| 154 | test(3) = 6.0 * (C.t() * R.t()).AsScalar() - DotProduct(2.0 * C, 3.0 * R); |
---|
| 155 | Matrix MC = C.AsMatrix(2,5), MR = R.AsMatrix(5,2); |
---|
| 156 | test(4) = DotProduct(MC, MR) - (R * C).AsScalar(); |
---|
| 157 | UpperTriangularMatrix UT(5); |
---|
| 158 | UT << 3 << 5 << 2 << 1 << 7 |
---|
| 159 | << 1 << 1 << 8 << 2 |
---|
| 160 | << 7 << 0 << 1 |
---|
| 161 | << 3 << 5 |
---|
| 162 | << 6; |
---|
| 163 | LowerTriangularMatrix LT(5); |
---|
| 164 | LT << 5 |
---|
| 165 | << 2 << 3 |
---|
| 166 | << 1 << 0 << 7 |
---|
| 167 | << 9 << 8 << 1 << 2 |
---|
| 168 | << 0 << 2 << 1 << 9 << 2; |
---|
| 169 | test(5) = DotProduct(UT, LT) - Sum(SP(UT, LT)); |
---|
| 170 | Print(test); |
---|
| 171 | // check row-wise load; |
---|
| 172 | LowerTriangularMatrix LT1(5); |
---|
| 173 | LT1.Row(1) << 5; |
---|
| 174 | LT1.Row(2) << 2 << 3; |
---|
| 175 | LT1.Row(3) << 1 << 0 << 7; |
---|
| 176 | LT1.Row(4) << 9 << 8 << 1 << 2; |
---|
| 177 | LT1.Row(5) << 0 << 2 << 1 << 9 << 2; |
---|
| 178 | Matrix M = LT1 - LT; Print(M); |
---|
| 179 | // check solution with identity matrix |
---|
| 180 | IdentityMatrix IM(5); IM *= 2; |
---|
| 181 | LinearEquationSolver LES1(IM); |
---|
| 182 | LowerTriangularMatrix LTX = LES1.i() * LT; |
---|
| 183 | M = LTX * 2 - LT; Print(M); |
---|
| 184 | DiagonalMatrix D = IM; |
---|
| 185 | LinearEquationSolver LES2(IM); |
---|
| 186 | LTX = LES2.i() * LT; |
---|
| 187 | M = LTX * 2 - LT; Print(M); |
---|
| 188 | UpperTriangularMatrix UTX = LES1.i() * UT; |
---|
| 189 | M = UTX * 2 - UT; Print(M); |
---|
| 190 | UTX = LES2.i() * UT; |
---|
| 191 | M = UTX * 2 - UT; Print(M); |
---|
| 192 | } |
---|
| 193 | |
---|
| 194 | { |
---|
| 195 | Tracer et1("Stage 7"); |
---|
| 196 | // Some more GenericMatrix stuff with *= |= &= |
---|
| 197 | // but don't any additional checks |
---|
| 198 | BandMatrix BM1(6,2,3); |
---|
| 199 | BM1.Row(1) << 3 << 8 << 4 << 1; |
---|
| 200 | BM1.Row(2) << 5 << 1 << 9 << 7 << 2; |
---|
| 201 | BM1.Row(3) << 1 << 0 << 6 << 3 << 1 << 3; |
---|
| 202 | BM1.Row(4) << 4 << 2 << 5 << 2 << 4; |
---|
| 203 | BM1.Row(5) << 3 << 3 << 9 << 1; |
---|
| 204 | BM1.Row(6) << 4 << 2 << 9; |
---|
| 205 | BandMatrix BM2(6,1,1); |
---|
| 206 | BM2.Row(1) << 2.5 << 7.5; |
---|
| 207 | BM2.Row(2) << 1.5 << 3.0 << 8.5; |
---|
| 208 | BM2.Row(3) << 6.0 << 6.5 << 7.0; |
---|
| 209 | BM2.Row(4) << 2.5 << 2.0 << 8.0; |
---|
| 210 | BM2.Row(5) << 0.5 << 4.5 << 3.5; |
---|
| 211 | BM2.Row(6) << 9.5 << 7.5; |
---|
| 212 | Matrix RM1 = BM1, RM2 = BM2; |
---|
| 213 | Matrix X; |
---|
| 214 | GenericMatrix GRM1 = RM1, GBM1 = BM1, GRM2 = RM2, GBM2 = BM2; |
---|
| 215 | Matrix Z(6,0); Z = 5; Print(Z); |
---|
| 216 | GRM1 |= Z; GBM1 |= Z; GRM2 &= Z.t(); GBM2 &= Z.t(); |
---|
| 217 | X = GRM1 - BM1; Print(X); X = GBM1 - BM1; Print(X); |
---|
| 218 | X = GRM2 - BM2; Print(X); X = GBM2 - BM2; Print(X); |
---|
| 219 | |
---|
| 220 | GRM1 = RM1; GBM1 = BM1; GRM2 = RM2; GBM2 = BM2; |
---|
| 221 | GRM1 *= GRM2; GBM1 *= GBM2; |
---|
| 222 | X = GRM1 - BM1 * BM2; Print(X); |
---|
| 223 | X = RM1 * RM2 - GBM1; Print(X); |
---|
| 224 | |
---|
| 225 | GRM1 = RM1; GBM1 = BM1; GRM2 = RM2; GBM2 = BM2; |
---|
| 226 | GRM1 *= GBM2; GBM1 *= GRM2; // Bs and Rs swapped on LHS |
---|
| 227 | X = GRM1 - BM1 * BM2; Print(X); |
---|
| 228 | X = RM1 * RM2 - GBM1; Print(X); |
---|
| 229 | |
---|
| 230 | X = BM1.t(); BandMatrix BM1X = BM1.t(); |
---|
| 231 | GRM1 = RM1; X -= GRM1.t(); Print(X); X = BM1X - BM1.t(); Print(X); |
---|
| 232 | |
---|
| 233 | // check that linear equation solver works with Identity Matrix |
---|
| 234 | IdentityMatrix IM(6); IM *= 2; |
---|
| 235 | GBM1 = BM1; GBM1 *= 4; GRM1 = RM1; GRM1 *= 4; |
---|
| 236 | DiagonalMatrix D = IM; |
---|
| 237 | LinearEquationSolver LES1(D); |
---|
| 238 | BandMatrix BX; |
---|
| 239 | BX = LES1.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X); |
---|
| 240 | LinearEquationSolver LES2(IM); |
---|
| 241 | BX = LES2.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X); |
---|
| 242 | BX = D.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X); |
---|
| 243 | BX = IM.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X); |
---|
| 244 | BX = IM.i(); BX *= GBM1; BX -= BM1 * 2; X = BX; Print(X); |
---|
| 245 | |
---|
| 246 | // try symmetric band matrices |
---|
| 247 | SymmetricBandMatrix SBM; SBM << SP(BM1, BM1.t()); |
---|
| 248 | SBM << IM.i() * SBM; |
---|
| 249 | X = 2 * SBM - SP(RM1, RM1.t()); Print(X); |
---|
| 250 | |
---|
| 251 | // Do this again with more general D |
---|
| 252 | D << 2.5 << 7.5 << 2 << 5 << 4.5 << 7.5; |
---|
| 253 | BX = D.i() * BM1; X = BX - D.i() * RM1; |
---|
| 254 | Clean(X,0.00000001); Print(X); |
---|
| 255 | BX = D.i(); BX *= BM1; X = BX - D.i() * RM1; |
---|
| 256 | Clean(X,0.00000001); Print(X); |
---|
| 257 | SBM << SP(BM1, BM1.t()); |
---|
| 258 | BX = D.i() * SBM; X = BX - D.i() * SP(RM1, RM1.t()); |
---|
| 259 | Clean(X,0.00000001); Print(X); |
---|
| 260 | |
---|
| 261 | // test return |
---|
| 262 | BX = TestReturn(BM1); X = BX - BM1; |
---|
| 263 | if (BX.BandWidth() != BM1.BandWidth()) X = 5; |
---|
| 264 | Print(X); |
---|
| 265 | } |
---|
| 266 | |
---|
| 267 | // cout << "\nEnd of eighth test\n"; |
---|
| 268 | } |
---|