[4565] | 1 | |
---|
| 2 | //#define WANT_STREAM |
---|
| 3 | |
---|
| 4 | |
---|
| 5 | #include "include.h" |
---|
| 6 | #include "newmat.h" |
---|
| 7 | |
---|
| 8 | #include "tmt.h" |
---|
| 9 | |
---|
| 10 | #ifdef use_namespace |
---|
| 11 | using namespace NEWMAT; |
---|
| 12 | #endif |
---|
| 13 | |
---|
| 14 | |
---|
| 15 | |
---|
| 16 | |
---|
| 17 | void trymatc() |
---|
| 18 | { |
---|
| 19 | // cout << "\nTwelfth test of Matrix package\n"; |
---|
| 20 | Tracer et("Twelfth test of Matrix package"); |
---|
| 21 | Tracer::PrintTrace(); |
---|
| 22 | DiagonalMatrix D(15); D=1.5; |
---|
| 23 | Matrix A(15,15); |
---|
| 24 | int i,j; |
---|
| 25 | for (i=1;i<=15;i++) for (j=1;j<=15;j++) A(i,j)=i*i+j-150; |
---|
| 26 | { A = A + D; } |
---|
| 27 | ColumnVector B(15); |
---|
| 28 | for (i=1;i<=15;i++) B(i)=i+i*i-150.0; |
---|
| 29 | { |
---|
| 30 | Tracer et1("Stage 1"); |
---|
| 31 | ColumnVector B1=B; |
---|
| 32 | B=(A*2.0).i() * B1; |
---|
| 33 | Matrix X = A*B-B1/2.0; |
---|
| 34 | Clean(X, 0.000000001); Print(X); |
---|
| 35 | A.ReSize(3,5); |
---|
| 36 | for (i=1; i<=3; i++) for (j=1; j<=5; j++) A(i,j) = i+100*j; |
---|
| 37 | |
---|
| 38 | B = A.AsColumn()+10000; |
---|
| 39 | RowVector R = (A+10000).AsColumn().t(); |
---|
| 40 | Print( RowVector(R-B.t()) ); |
---|
| 41 | } |
---|
| 42 | |
---|
| 43 | { |
---|
| 44 | Tracer et1("Stage 2"); |
---|
| 45 | B = A.AsColumn()+10000; |
---|
| 46 | Matrix XR = (A+10000).AsMatrix(15,1).t(); |
---|
| 47 | Print( RowVector(XR-B.t()) ); |
---|
| 48 | } |
---|
| 49 | |
---|
| 50 | { |
---|
| 51 | Tracer et1("Stage 3"); |
---|
| 52 | B = (A.AsMatrix(15,1)+A.AsColumn())/2.0+10000; |
---|
| 53 | Matrix MR = (A+10000).AsColumn().t(); |
---|
| 54 | Print( RowVector(MR-B.t()) ); |
---|
| 55 | |
---|
| 56 | B = (A.AsMatrix(15,1)+A.AsColumn())/2.0; |
---|
| 57 | MR = A.AsColumn().t(); |
---|
| 58 | Print( RowVector(MR-B.t()) ); |
---|
| 59 | } |
---|
| 60 | |
---|
| 61 | { |
---|
| 62 | Tracer et1("Stage 4"); |
---|
| 63 | B = (A.AsMatrix(15,1)+A.AsColumn())/2.0; |
---|
| 64 | RowVector R = A.AsColumn().t(); |
---|
| 65 | Print( RowVector(R-B.t()) ); |
---|
| 66 | } |
---|
| 67 | |
---|
| 68 | { |
---|
| 69 | Tracer et1("Stage 5"); |
---|
| 70 | RowVector R = (A.AsColumn()-5000).t(); |
---|
| 71 | B = ((R.t()+10000) - A.AsColumn())-5000; |
---|
| 72 | Print( RowVector(B.t()) ); |
---|
| 73 | } |
---|
| 74 | |
---|
| 75 | { |
---|
| 76 | Tracer et1("Stage 6"); |
---|
| 77 | B = A.AsColumn(); ColumnVector B1 = (A+10000).AsColumn() - 10000; |
---|
| 78 | Print(ColumnVector(B1-B)); |
---|
| 79 | } |
---|
| 80 | |
---|
| 81 | { |
---|
| 82 | Tracer et1("Stage 7"); |
---|
| 83 | Matrix X = B.AsMatrix(3,5); Print(Matrix(X-A)); |
---|
| 84 | for (i=1; i<=3; i++) for (j=1; j<=5; j++) B(5*(i-1)+j) -= i+100*j; |
---|
| 85 | Print(B); |
---|
| 86 | } |
---|
| 87 | |
---|
| 88 | { |
---|
| 89 | Tracer et1("Stage 8"); |
---|
| 90 | A.ReSize(7,7); D.ReSize(7); |
---|
| 91 | for (i=1; i<=7; i++) for (j=1; j<=7; j++) A(i,j) = i*j*j; |
---|
| 92 | for (i=1; i<=7; i++) D(i,i) = i; |
---|
| 93 | UpperTriangularMatrix U; U << A; |
---|
| 94 | Matrix X = A; for (i=1; i<=7; i++) X(i,i) = i; |
---|
| 95 | A.Inject(D); Print(Matrix(X-A)); |
---|
| 96 | X = U; U.Inject(D); A = U; for (i=1; i<=7; i++) X(i,i) = i; |
---|
| 97 | Print(Matrix(X-A)); |
---|
| 98 | } |
---|
| 99 | |
---|
| 100 | { |
---|
| 101 | Tracer et1("Stage 9"); |
---|
| 102 | A.ReSize(7,5); |
---|
| 103 | for (i=1; i<=7; i++) for (j=1; j<=5; j++) A(i,j) = i+100*j; |
---|
| 104 | Matrix Y = A; Y = Y - ((const Matrix&)A); Print(Y); |
---|
| 105 | Matrix X = A; // X.Release(); |
---|
| 106 | Y = A; Y = ((const Matrix&)X) - A; Print(Y); Y = 0.0; |
---|
| 107 | Y = ((const Matrix&)X) - ((const Matrix&)A); Print(Y); |
---|
| 108 | } |
---|
| 109 | |
---|
| 110 | { |
---|
| 111 | Tracer et1("Stage 10"); |
---|
| 112 | // some tests on submatrices |
---|
| 113 | UpperTriangularMatrix U(20); |
---|
| 114 | for (i=1; i<=20; i++) for (j=i; j<=20; j++) U(i,j)=100 * i + j; |
---|
| 115 | UpperTriangularMatrix V = U.SymSubMatrix(1,5); |
---|
| 116 | UpperTriangularMatrix U1 = U; |
---|
| 117 | U1.SubMatrix(4,8,5,9) /= 2; |
---|
| 118 | U1.SubMatrix(4,8,5,9) += 388 * V; |
---|
| 119 | U1.SubMatrix(4,8,5,9) *= 2; |
---|
| 120 | U1.SubMatrix(4,8,5,9) += V; |
---|
| 121 | U1 -= U; UpperTriangularMatrix U2 = U1; |
---|
| 122 | U1 << U1.SubMatrix(4,8,5,9); |
---|
| 123 | U2.SubMatrix(4,8,5,9) -= U1; Print(U2); |
---|
| 124 | U1 -= (777*V); Print(U1); |
---|
| 125 | |
---|
| 126 | U1 = U; U1.SubMatrix(4,8,5,9) -= U.SymSubMatrix(1,5); |
---|
| 127 | U1 -= U; U2 = U1; U1 << U1.SubMatrix(4,8,5,9); |
---|
| 128 | U2.SubMatrix(4,8,5,9) -= U1; Print(U2); |
---|
| 129 | U1 += V; Print(U1); |
---|
| 130 | |
---|
| 131 | U1 = U; |
---|
| 132 | U1.SubMatrix(3,10,15,19) += 29; |
---|
| 133 | U1 -= U; |
---|
| 134 | Matrix X = U1.SubMatrix(3,10,15,19); X -= 29; Print(X); |
---|
| 135 | U1.SubMatrix(3,10,15,19) *= 0; Print(U1); |
---|
| 136 | |
---|
| 137 | LowerTriangularMatrix L = U.t(); |
---|
| 138 | LowerTriangularMatrix M = L.SymSubMatrix(1,5); |
---|
| 139 | LowerTriangularMatrix L1 = L; |
---|
| 140 | L1.SubMatrix(5,9,4,8) /= 2; |
---|
| 141 | L1.SubMatrix(5,9,4,8) += 388 * M; |
---|
| 142 | L1.SubMatrix(5,9,4,8) *= 2; |
---|
| 143 | L1.SubMatrix(5,9,4,8) += M; |
---|
| 144 | L1 -= L; LowerTriangularMatrix L2 = L1; |
---|
| 145 | L1 << L1.SubMatrix(5,9,4,8); |
---|
| 146 | L2.SubMatrix(5,9,4,8) -= L1; Print(L2); |
---|
| 147 | L1 -= (777*M); Print(L1); |
---|
| 148 | |
---|
| 149 | L1 = L; L1.SubMatrix(5,9,4,8) -= L.SymSubMatrix(1,5); |
---|
| 150 | L1 -= L; L2 =L1; L1 << L1.SubMatrix(5,9,4,8); |
---|
| 151 | L2.SubMatrix(5,9,4,8) -= L1; Print(L2); |
---|
| 152 | L1 += M; Print(L1); |
---|
| 153 | |
---|
| 154 | L1 = L; |
---|
| 155 | L1.SubMatrix(15,19,3,10) -= 29; |
---|
| 156 | L1 -= L; |
---|
| 157 | X = L1.SubMatrix(15,19,3,10); X += 29; Print(X); |
---|
| 158 | L1.SubMatrix(15,19,3,10) *= 0; Print(L1); |
---|
| 159 | } |
---|
| 160 | |
---|
| 161 | { |
---|
| 162 | Tracer et1("Stage 11"); |
---|
| 163 | // more tests on submatrices |
---|
| 164 | Matrix M(20,30); |
---|
| 165 | for (i=1; i<=20; i++) for (j=1; j<=30; j++) M(i,j)=100 * i + j; |
---|
| 166 | Matrix M1 = M; |
---|
| 167 | |
---|
| 168 | for (j=1; j<=30; j++) |
---|
| 169 | { ColumnVector CV = 3 * M1.Column(j); M.Column(j) += CV; } |
---|
| 170 | for (i=1; i<=20; i++) |
---|
| 171 | { RowVector RV = 5 * M1.Row(i); M.Row(i) -= RV; } |
---|
| 172 | |
---|
| 173 | M += M1; Print(M); |
---|
| 174 | |
---|
| 175 | } |
---|
| 176 | |
---|
| 177 | { |
---|
| 178 | Tracer et1("Stage 12"); |
---|
| 179 | // more tests on Release |
---|
| 180 | Matrix M(20,30); |
---|
| 181 | for (i=1; i<=20; i++) for (j=1; j<=30; j++) M(i,j)=100 * i + j; |
---|
| 182 | Matrix M1 = M; |
---|
| 183 | M.Release(); |
---|
| 184 | Matrix M2 = M; |
---|
| 185 | Matrix X = M; Print(X); |
---|
| 186 | X = M1 - M2; Print(X); |
---|
| 187 | |
---|
| 188 | #ifndef DONT_DO_NRIC |
---|
| 189 | nricMatrix N = M1; |
---|
| 190 | nricMatrix N1 = N; |
---|
| 191 | N.Release(); |
---|
| 192 | nricMatrix N2 = N; |
---|
| 193 | nricMatrix Y = N; Print(Y); |
---|
| 194 | Y = N1 - N2; Print(Y); |
---|
| 195 | #endif |
---|
| 196 | |
---|
| 197 | } |
---|
| 198 | |
---|
| 199 | // cout << "\nEnd of twelfth test\n"; |
---|
| 200 | } |
---|