[2043] | 1 | |
---|
| 2 | |
---|
| 3 | /* |
---|
| 4 | orxonox - the future of 3D-vertical-scrollers |
---|
| 5 | |
---|
| 6 | Copyright (C) 2004 orx |
---|
| 7 | |
---|
| 8 | This program is free software; you can redistribute it and/or modify |
---|
| 9 | it under the terms of the GNU General Public License as published by |
---|
| 10 | the Free Software Foundation; either version 2, or (at your option) |
---|
| 11 | any later version. |
---|
| 12 | |
---|
| 13 | ### File Specific: |
---|
| 14 | main-programmer: Christian Meyer |
---|
| 15 | co-programmer: ... |
---|
| 16 | */ |
---|
| 17 | |
---|
| 18 | |
---|
| 19 | #include "vector.h" |
---|
| 20 | |
---|
| 21 | |
---|
| 22 | using namespace std; |
---|
| 23 | |
---|
| 24 | /** |
---|
| 25 | \brief add two vectors |
---|
| 26 | \param v: the other vector |
---|
| 27 | \return the sum of both vectors |
---|
| 28 | */ |
---|
| 29 | Vector Vector::operator+ (const Vector& v) const |
---|
| 30 | { |
---|
| 31 | Vector r; |
---|
| 32 | |
---|
| 33 | r.x = x + v.x; |
---|
| 34 | r.y = y + v.y; |
---|
| 35 | r.z = z + v.z; |
---|
| 36 | |
---|
| 37 | return r; |
---|
| 38 | } |
---|
| 39 | |
---|
| 40 | /** |
---|
| 41 | \brief subtract a vector from another |
---|
| 42 | \param v: the other vector |
---|
| 43 | \return the difference between the vectors |
---|
| 44 | */ |
---|
| 45 | Vector Vector::operator- (const Vector& v) const |
---|
| 46 | { |
---|
| 47 | Vector r; |
---|
| 48 | |
---|
| 49 | r.x = x - v.x; |
---|
| 50 | r.y = y - v.y; |
---|
| 51 | r.z = z - v.z; |
---|
| 52 | |
---|
| 53 | return r; |
---|
| 54 | } |
---|
| 55 | |
---|
| 56 | /** |
---|
| 57 | \brief calculate the dot product of two vectors |
---|
| 58 | \param v: the other vector |
---|
| 59 | \return the dot product of the vectors |
---|
| 60 | */ |
---|
| 61 | float Vector::operator* (const Vector& v) const |
---|
| 62 | { |
---|
| 63 | return x*v.x+y*v.y+z*v.z; |
---|
| 64 | } |
---|
| 65 | |
---|
| 66 | /** |
---|
| 67 | \brief multiply a vector with a float |
---|
| 68 | \param f: the factor |
---|
| 69 | \return the vector multipied by f |
---|
| 70 | */ |
---|
| 71 | Vector Vector::operator* (float f) const |
---|
| 72 | { |
---|
| 73 | Vector r; |
---|
| 74 | |
---|
| 75 | r.x = x * f; |
---|
| 76 | r.y = y * f; |
---|
| 77 | r.z = z * f; |
---|
| 78 | |
---|
| 79 | return r; |
---|
| 80 | } |
---|
| 81 | |
---|
| 82 | /** |
---|
| 83 | \brief divide a vector with a float |
---|
| 84 | \param f: the divisor |
---|
| 85 | \return the vector divided by f |
---|
| 86 | */ |
---|
| 87 | Vector Vector::operator/ (float f) const |
---|
| 88 | { |
---|
| 89 | Vector r; |
---|
| 90 | |
---|
| 91 | if( f == 0.0) |
---|
| 92 | { |
---|
| 93 | // Prevent divide by zero |
---|
| 94 | return Vector (0,0,0); |
---|
| 95 | } |
---|
| 96 | |
---|
| 97 | r.x = x / f; |
---|
| 98 | r.y = y / f; |
---|
| 99 | r.z = z / f; |
---|
| 100 | |
---|
| 101 | return r; |
---|
| 102 | } |
---|
| 103 | |
---|
| 104 | /** |
---|
| 105 | \brief calculate the dot product of two vectors |
---|
| 106 | \param v: the other vector |
---|
| 107 | \return the dot product of the vectors |
---|
| 108 | */ |
---|
| 109 | float Vector::dot (const Vector& v) const |
---|
| 110 | { |
---|
| 111 | return x*v.x+y*v.y+z*v.z; |
---|
| 112 | } |
---|
| 113 | |
---|
| 114 | /** |
---|
| 115 | \brief calculate the cross product of two vectors |
---|
| 116 | \param v: the other vector |
---|
| 117 | \return the cross product of the vectors |
---|
| 118 | */ |
---|
| 119 | Vector Vector::cross (const Vector& v) const |
---|
| 120 | { |
---|
| 121 | Vector r; |
---|
| 122 | |
---|
| 123 | r.x = y * v.z - z * v.y; |
---|
| 124 | r.y = z * v.x - x * v.z; |
---|
| 125 | r.z = x * v.y - y * v.x; |
---|
| 126 | |
---|
| 127 | return r; |
---|
| 128 | } |
---|
| 129 | |
---|
| 130 | /** |
---|
| 131 | \brief normalizes the vector to lenght 1.0 |
---|
| 132 | */ |
---|
| 133 | void Vector::normalize () |
---|
| 134 | { |
---|
| 135 | float l = len(); |
---|
| 136 | |
---|
| 137 | if( l == 0.0) |
---|
| 138 | { |
---|
| 139 | // Prevent divide by zero |
---|
| 140 | return; |
---|
| 141 | } |
---|
| 142 | |
---|
| 143 | x = x / l; |
---|
| 144 | y = y / l; |
---|
| 145 | z = z / l; |
---|
| 146 | } |
---|
| 147 | |
---|
| 148 | /** |
---|
| 149 | \brief calculates the lenght of the vector |
---|
| 150 | \return the lenght of the vector |
---|
| 151 | */ |
---|
| 152 | float Vector::len () const |
---|
| 153 | { |
---|
| 154 | return sqrt (x*x+y*y+z*z); |
---|
| 155 | } |
---|
| 156 | |
---|
| 157 | /** |
---|
| 158 | \brief calculate the angle between two vectors in radiances |
---|
| 159 | \param v1: a vector |
---|
| 160 | \param v2: another vector |
---|
| 161 | \return the angle between the vectors in radians |
---|
| 162 | */ |
---|
| 163 | float angle_rad (const Vector& v1, const Vector& v2) |
---|
| 164 | { |
---|
| 165 | return acos( v1 * v2 / (v1.len() * v2.len())); |
---|
| 166 | } |
---|
| 167 | |
---|
| 168 | /** |
---|
| 169 | \brief calculate the angle between two vectors in degrees |
---|
| 170 | \param v1: a vector |
---|
| 171 | \param v2: another vector |
---|
| 172 | \return the angle between the vectors in degrees |
---|
| 173 | */ |
---|
| 174 | float angle_deg (const Vector& v1, const Vector& v2) |
---|
| 175 | { |
---|
| 176 | float f; |
---|
| 177 | f = acos( v1 * v2 / (v1.len() * v2.len())); |
---|
| 178 | return f * 180 / PI; |
---|
| 179 | } |
---|
| 180 | |
---|
| 181 | /** |
---|
| 182 | \brief create a rotation from a vector |
---|
| 183 | \param v: a vector |
---|
| 184 | */ |
---|
| 185 | Rotation::Rotation (const Vector& v) |
---|
| 186 | { |
---|
| 187 | Vector x = Vector( 1, 0, 0); |
---|
| 188 | Vector axis = x.cross( v); |
---|
| 189 | axis.normalize(); |
---|
| 190 | float angle = angle_rad( x, v); |
---|
| 191 | float ca = cos(angle); |
---|
| 192 | float sa = sin(angle); |
---|
| 193 | m[0] = 1.0f+(1.0f-ca)*(axis.x*axis.x-1.0f); |
---|
| 194 | m[1] = -axis.z*sa+(1.0f-ca)*axis.x*axis.y; |
---|
| 195 | m[2] = axis.y*sa+(1.0f-ca)*axis.x*axis.z; |
---|
| 196 | m[3] = axis.z*sa+(1.0f-ca)*axis.x*axis.y; |
---|
| 197 | m[4] = 1.0f+(1.0f-ca)*(axis.y*axis.y-1.0f); |
---|
| 198 | m[5] = -axis.x*sa+(1.0f-ca)*axis.y*axis.z; |
---|
| 199 | m[6] = -axis.y*sa+(1.0f-ca)*axis.x*axis.z; |
---|
| 200 | m[7] = axis.x*sa+(1.0f-ca)*axis.y*axis.z; |
---|
| 201 | m[8] = 1.0f+(1.0f-ca)*(axis.z*axis.z-1.0f); |
---|
| 202 | } |
---|
| 203 | |
---|
| 204 | /** |
---|
| 205 | \brief creates a rotation from an axis and an angle (radians!) |
---|
| 206 | \param axis: the rotational axis |
---|
| 207 | \param angle: the angle in radians |
---|
| 208 | */ |
---|
| 209 | Rotation::Rotation (const Vector& axis, float angle) |
---|
| 210 | { |
---|
| 211 | float ca, sa; |
---|
| 212 | ca = cos(angle); |
---|
| 213 | sa = sin(angle); |
---|
| 214 | m[0] = 1.0f+(1.0f-ca)*(axis.x*axis.x-1.0f); |
---|
| 215 | m[1] = -axis.z*sa+(1.0f-ca)*axis.x*axis.y; |
---|
| 216 | m[2] = axis.y*sa+(1.0f-ca)*axis.x*axis.z; |
---|
| 217 | m[3] = axis.z*sa+(1.0f-ca)*axis.x*axis.y; |
---|
| 218 | m[4] = 1.0f+(1.0f-ca)*(axis.y*axis.y-1.0f); |
---|
| 219 | m[5] = -axis.x*sa+(1.0f-ca)*axis.y*axis.z; |
---|
| 220 | m[6] = -axis.y*sa+(1.0f-ca)*axis.x*axis.z; |
---|
| 221 | m[7] = axis.x*sa+(1.0f-ca)*axis.y*axis.z; |
---|
| 222 | m[8] = 1.0f+(1.0f-ca)*(axis.z*axis.z-1.0f); |
---|
| 223 | } |
---|
| 224 | |
---|
| 225 | /** |
---|
| 226 | \brief creates a rotation from euler angles (pitch/yaw/roll) |
---|
| 227 | \param pitch: rotation around z (in radians) |
---|
| 228 | \param yaw: rotation around y (in radians) |
---|
| 229 | \param roll: rotation around x (in radians) |
---|
| 230 | */ |
---|
| 231 | Rotation::Rotation ( float pitch, float yaw, float roll) |
---|
| 232 | { |
---|
| 233 | float cy, sy, cr, sr, cp, sp; |
---|
| 234 | cy = cos(yaw); |
---|
| 235 | sy = sin(yaw); |
---|
| 236 | cr = cos(roll); |
---|
| 237 | sr = sin(roll); |
---|
| 238 | cp = cos(pitch); |
---|
| 239 | sp = sin(pitch); |
---|
| 240 | m[0] = cy*cr; |
---|
| 241 | m[1] = -cy*sr; |
---|
| 242 | m[2] = sy; |
---|
| 243 | m[3] = cp*sr+sp*sy*cr; |
---|
| 244 | m[4] = cp*cr-sp*sr*sy; |
---|
| 245 | m[5] = -sp*cy; |
---|
| 246 | m[6] = sp*sr-cp*sy*cr; |
---|
| 247 | m[7] = sp*cr+cp*sy*sr; |
---|
| 248 | m[8] = cp*cy; |
---|
| 249 | } |
---|
| 250 | |
---|
| 251 | /** |
---|
| 252 | \brief creates a nullrotation (an identity rotation) |
---|
| 253 | */ |
---|
| 254 | Rotation::Rotation () |
---|
| 255 | { |
---|
| 256 | m[0] = 1.0f; |
---|
| 257 | m[1] = 0.0f; |
---|
| 258 | m[2] = 0.0f; |
---|
| 259 | m[3] = 0.0f; |
---|
| 260 | m[4] = 1.0f; |
---|
| 261 | m[5] = 0.0f; |
---|
| 262 | m[6] = 0.0f; |
---|
| 263 | m[7] = 0.0f; |
---|
| 264 | m[8] = 1.0f; |
---|
| 265 | } |
---|
| 266 | |
---|
| 267 | /** |
---|
| 268 | \brief rotates the vector by the given rotation |
---|
| 269 | \param v: a vector |
---|
| 270 | \param r: a rotation |
---|
| 271 | \return the rotated vector |
---|
| 272 | */ |
---|
| 273 | Vector rotate_vector( const Vector& v, const Rotation& r) |
---|
| 274 | { |
---|
| 275 | Vector t; |
---|
| 276 | |
---|
| 277 | t.x = v.x * r.m[0] + v.y * r.m[1] + v.z * r.m[2]; |
---|
| 278 | t.y = v.x * r.m[3] + v.y * r.m[4] + v.z * r.m[5]; |
---|
| 279 | t.z = v.x * r.m[6] + v.y * r.m[7] + v.z * r.m[8]; |
---|
| 280 | |
---|
| 281 | return t; |
---|
| 282 | } |
---|
| 283 | |
---|
| 284 | /** |
---|
| 285 | \brief calculate the distance between two lines |
---|
| 286 | \param l: the other line |
---|
| 287 | \return the distance between the lines |
---|
| 288 | */ |
---|
| 289 | float Line::distance (const Line& l) const |
---|
| 290 | { |
---|
| 291 | float q, d; |
---|
| 292 | Vector n = a.cross(l.a); |
---|
| 293 | q = n.dot(r-l.r); |
---|
| 294 | d = n.len(); |
---|
| 295 | if( d == 0.0) return 0.0; |
---|
| 296 | return q/d; |
---|
| 297 | } |
---|
| 298 | |
---|
| 299 | /** |
---|
| 300 | \brief calculate the distance between a line and a point |
---|
| 301 | \param v: the point |
---|
| 302 | \return the distance between the Line and the point |
---|
| 303 | */ |
---|
| 304 | float Line::distance_point (const Vector& v) const |
---|
| 305 | { |
---|
| 306 | Vector d = v-r; |
---|
| 307 | Vector u = a * d.dot( a); |
---|
| 308 | return (d - u).len(); |
---|
| 309 | } |
---|
| 310 | |
---|
| 311 | /** |
---|
| 312 | \brief calculate the two points of minimal distance of two lines |
---|
| 313 | \param l: the other line |
---|
| 314 | \return a Vector[2] (!has to be deleted after use!) containing the two points of minimal distance |
---|
| 315 | */ |
---|
| 316 | Vector* Line::footpoints (const Line& l) const |
---|
| 317 | { |
---|
| 318 | Vector* fp = new Vector[2]; |
---|
| 319 | Plane p = Plane (r + a.cross(l.a), r, r + a); |
---|
| 320 | fp[1] = p.intersect_line (l); |
---|
| 321 | p = Plane (fp[1], l.a); |
---|
| 322 | fp[0] = p.intersect_line (*this); |
---|
| 323 | return fp; |
---|
| 324 | } |
---|
| 325 | |
---|
| 326 | /** |
---|
| 327 | \brief calculate the length of a line |
---|
| 328 | \return the lenght of the line |
---|
| 329 | */ |
---|
| 330 | float Line::len() const |
---|
| 331 | { |
---|
| 332 | return a.len(); |
---|
| 333 | } |
---|
| 334 | |
---|
| 335 | /** |
---|
| 336 | \brief rotate the line by given rotation |
---|
| 337 | \param rot: a rotation |
---|
| 338 | */ |
---|
| 339 | void Line::rotate (const Rotation& rot) |
---|
| 340 | { |
---|
| 341 | Vector t = a + r; |
---|
| 342 | t = rotate_vector( t, rot); |
---|
| 343 | r = rotate_vector( r, rot), |
---|
| 344 | a = t - r; |
---|
| 345 | } |
---|
| 346 | |
---|
| 347 | /** |
---|
| 348 | \brief create a plane from three points |
---|
| 349 | \param a: first point |
---|
| 350 | \param b: second point |
---|
| 351 | \param c: third point |
---|
| 352 | */ |
---|
| 353 | Plane::Plane (Vector a, Vector b, Vector c) |
---|
| 354 | { |
---|
| 355 | n = (a-b).cross(c-b); |
---|
| 356 | k = -(n.x*b.x+n.y*b.y+n.z*b.z); |
---|
| 357 | } |
---|
| 358 | |
---|
| 359 | /** |
---|
| 360 | \brief create a plane from anchor point and normal |
---|
| 361 | \param n: normal vector |
---|
| 362 | \param p: anchor point |
---|
| 363 | */ |
---|
| 364 | Plane::Plane (Vector norm, Vector p) |
---|
| 365 | { |
---|
| 366 | n = norm; |
---|
| 367 | k = -(n.x*p.x+n.y*p.y+n.z*p.z); |
---|
| 368 | } |
---|
| 369 | |
---|
| 370 | /** |
---|
| 371 | \brief returns the intersection point between the plane and a line |
---|
| 372 | \param l: a line |
---|
| 373 | */ |
---|
| 374 | Vector Plane::intersect_line (const Line& l) const |
---|
| 375 | { |
---|
| 376 | if (n.x*l.a.x+n.y*l.a.y+n.z*l.a.z == 0.0) return Vector(0,0,0); |
---|
| 377 | float t = (n.x*l.r.x+n.y*l.r.y+n.z*l.r.z+k) / (n.x*l.a.x+n.y*l.a.y+n.z*l.a.z); |
---|
| 378 | return l.r + (l.a * t); |
---|
| 379 | } |
---|
| 380 | |
---|
| 381 | /** |
---|
| 382 | \brief returns the distance between the plane and a point |
---|
| 383 | \param p: a Point |
---|
| 384 | \return the distance between the plane and the point (can be negative) |
---|
| 385 | */ |
---|
| 386 | float Plane::distance_point (const Vector& p) const |
---|
| 387 | { |
---|
| 388 | float l = n.len(); |
---|
| 389 | if( l == 0.0) return 0.0; |
---|
| 390 | return (n.dot(p) + k) / n.len(); |
---|
| 391 | } |
---|
| 392 | |
---|
| 393 | /** |
---|
| 394 | \brief returns the side a point is located relative to a Plane |
---|
| 395 | \param p: a Point |
---|
| 396 | \return 0 if the point is contained within the Plane, positive(negative) if the point is in the positive(negative) semi-space of the Plane |
---|
| 397 | */ |
---|
| 398 | float Plane::locate_point (const Vector& p) const |
---|
| 399 | { |
---|
| 400 | return (n.dot(p) + k); |
---|
| 401 | } |
---|