[4627] | 1 | /*! |
---|
[5039] | 2 | * @file lin_alg.h |
---|
[4836] | 3 | * Definition of some important linear algebra formulas |
---|
[4627] | 4 | |
---|
| 5 | compute the eigenpairs (eigenvalues and eigenvectors) of a real symmetric matrix "A" by the Jacobi method |
---|
| 6 | */ |
---|
| 7 | |
---|
[4628] | 8 | |
---|
[5488] | 9 | |
---|
[4628] | 10 | /************************************************************ |
---|
| 11 | * This subroutine computes all eigenvalues and eigenvectors * |
---|
| 12 | * of a real symmetric square matrix A(N,N). On output, ele- * |
---|
| 13 | * ments of A above the diagonal are destroyed. D(N) returns * |
---|
| 14 | * the eigenvalues of matrix A. V(N,N) contains, on output, * |
---|
| 15 | * the eigenvectors of A by columns. THe normalization to * |
---|
| 16 | * unity is made by main program before printing results. * |
---|
| 17 | * NROT returns the number of Jacobi matrix rotations which * |
---|
| 18 | * were required. * |
---|
| 19 | * --------------------------------------------------------- * |
---|
| 20 | * Ref.:"NUMERICAL RECIPES IN FORTRAN, Cambridge University * |
---|
| 21 | * Press, 1986, chap. 11, pages 346-348". * |
---|
| 22 | * * |
---|
| 23 | * C++ version by J-P Moreau, Paris. * |
---|
| 24 | ************************************************************/ |
---|
[5488] | 25 | void JacobI(float **A, float *D, float **V, int *NROT) { |
---|
| 26 | |
---|
| 27 | int N = 3; |
---|
| 28 | |
---|
[4628] | 29 | float *B, *Z; |
---|
[5428] | 30 | double c=0.0f, g=0.0f, h=0.0f, s=0.0f, sm=0.0f, t=0.0f, tau=0.0f, theta=0.0f, tresh=0.0f; |
---|
[5490] | 31 | int i = 0, j = 0, ip = 0, iq = 0; |
---|
[4628] | 32 | |
---|
[5428] | 33 | //allocate vectors B, Z |
---|
[5491] | 34 | B = new float[N]; |
---|
| 35 | Z = new float[N]; |
---|
[4628] | 36 | |
---|
[5489] | 37 | // initialize V to identity matrix |
---|
| 38 | for( ip = 0; ip < N; ip++) { |
---|
| 39 | for( iq = 0; iq < N; iq++) |
---|
[5488] | 40 | V[ip][iq] = 0.0f; |
---|
| 41 | V[ip][ip] = 1.0f; |
---|
[4628] | 42 | } |
---|
[5489] | 43 | // initialize B,D to the diagonal of A |
---|
| 44 | for( ip = 0; ip < N; ip++) { |
---|
[5488] | 45 | B[ip] = A[ip][ip]; |
---|
| 46 | D[ip] = B[ip]; |
---|
[5489] | 47 | Z[ip] = 0.0f; |
---|
[4628] | 48 | } |
---|
[5488] | 49 | |
---|
| 50 | *NROT = 0; |
---|
| 51 | // make maximaly 50 iterations |
---|
| 52 | for( i = 1; i <= 50; i++) { |
---|
[5490] | 53 | sm = 0.0f; |
---|
[5488] | 54 | |
---|
[5490] | 55 | // sum off-diagonal elements |
---|
| 56 | for( ip = 0; ip < N - 1; ip++) |
---|
| 57 | for( iq = ip + 1; iq < N; iq++) |
---|
| 58 | sm += fabs(A[ip][iq]); |
---|
[5488] | 59 | |
---|
[5490] | 60 | // is it already a diagonal matrix? |
---|
| 61 | if( sm == 0) |
---|
[4630] | 62 | { |
---|
[5489] | 63 | delete[] B; |
---|
| 64 | delete[] Z; |
---|
[5490] | 65 | return; |
---|
[4628] | 66 | } |
---|
[5490] | 67 | // just adjust this on the first 3 sweeps |
---|
| 68 | if( i < 4) |
---|
[5491] | 69 | tresh = 0.2 * sm / (N * N) ; |
---|
[5490] | 70 | else |
---|
| 71 | tresh = 0.0f; |
---|
| 72 | |
---|
| 73 | for( ip = 0; ip < (N-1); ip++) { |
---|
| 74 | for( iq = ip + 1; iq < N; iq++) { |
---|
| 75 | |
---|
| 76 | g = 100.0f * fabs(A[ip][iq]); |
---|
| 77 | // after 4 sweeps, skip the rotation if the off-diagonal element is small |
---|
| 78 | if( (i > 4) && ( fabs(D[ip]) + g == fabs(D[ip]) ) && ( fabs(D[iq]) + g == fabs(D[iq]) ) ) |
---|
| 79 | A[ip][iq] = 0.0f; |
---|
| 80 | else if( fabs(A[ip][iq]) > tresh) { |
---|
| 81 | h = D[iq] - D[ip]; |
---|
| 82 | if (fabs(h) + g == fabs(h)) |
---|
| 83 | t = A[ip][iq] / h; |
---|
[4628] | 84 | else { |
---|
[5490] | 85 | theta = 0.5f * h / A[ip][iq]; |
---|
| 86 | t = 1.0f / (fabs(theta) + sqrt(1.0f + theta * theta)); |
---|
| 87 | if( theta < 0.0f) |
---|
| 88 | t = -t; |
---|
[4628] | 89 | } |
---|
[5490] | 90 | c = 1.0f / sqrt(1.0f + t * t); |
---|
| 91 | s = t * c; |
---|
| 92 | tau = s / (1.0f + c); |
---|
[5491] | 93 | h = t * A[ip][iq]; |
---|
[4628] | 94 | Z[ip] -= h; |
---|
| 95 | Z[iq] += h; |
---|
| 96 | D[ip] -= h; |
---|
| 97 | D[iq] += h; |
---|
[5491] | 98 | A[ip][iq] = 0.0f; |
---|
| 99 | |
---|
| 100 | for( j = 0; j < (ip - 1); j++) { |
---|
| 101 | g = A[j][ip]; |
---|
| 102 | h = A[j][iq]; |
---|
| 103 | A[j][ip] = g - s * (h + g * tau); |
---|
| 104 | A[j][iq] = h + s * (g - h * tau); |
---|
[4628] | 105 | } |
---|
[5491] | 106 | for( j = (ip + 1); j < (iq - 1); j++) { |
---|
| 107 | g = A[ip][j]; |
---|
| 108 | h = A[j][iq]; |
---|
| 109 | A[ip][j] = g - s * (h + g * tau); |
---|
| 110 | A[j][iq] = h + s * (g - h * tau); |
---|
[4628] | 111 | } |
---|
[5491] | 112 | for( j = (iq + 1); j < N; j++) { |
---|
| 113 | g = A[ip][j]; |
---|
| 114 | h = A[iq][j]; |
---|
| 115 | A[ip][j] = g - s * (h + g * tau); |
---|
| 116 | A[iq][j] = h + s * (g - h * tau); |
---|
[4628] | 117 | } |
---|
[5491] | 118 | for( j = 0; j < N; j++) { |
---|
| 119 | g = V[j][ip]; |
---|
| 120 | h = V[j][iq]; |
---|
| 121 | V[j][ip] = g - s * (h + g * tau); |
---|
| 122 | V[j][iq] = h + s * (g - h * tau); |
---|
[4628] | 123 | } |
---|
[5491] | 124 | *NROT += 1; |
---|
[4628] | 125 | } //end ((i.gt.4)...else if |
---|
| 126 | } // main iq loop |
---|
| 127 | } // main ip loop |
---|
[5491] | 128 | for( ip = 0; ip < N; ip++) { |
---|
[4628] | 129 | B[ip] += Z[ip]; |
---|
[5491] | 130 | D[ip] = B[ip]; |
---|
| 131 | Z[ip] = 0.0f; |
---|
[4628] | 132 | } |
---|
| 133 | } //end of main i loop |
---|
[5489] | 134 | delete[] B; |
---|
| 135 | delete[] Z; |
---|
[4628] | 136 | return; //too many iterations |
---|
| 137 | } |
---|
| 138 | |
---|
| 139 | |
---|
| 140 | |
---|
| 141 | |
---|
| 142 | |
---|
[4627] | 143 | #include "abstract_model.h" |
---|
| 144 | |
---|
| 145 | #include <stdio.h> |
---|
| 146 | #include <math.h> |
---|
| 147 | |
---|
| 148 | #define NDIM 3 |
---|
| 149 | |
---|
| 150 | |
---|
| 151 | typedef float MatrixX[3][3]; |
---|
| 152 | |
---|
| 153 | // |
---|
| 154 | // class "EVJacobi" for computing the eigenpairs |
---|
| 155 | // (members) |
---|
| 156 | // ndim int ... dimension |
---|
| 157 | // "ndim" must satisfy 1 < ndim < NDIM |
---|
| 158 | // ("NDIM" is given above). |
---|
| 159 | // a double [NDIM][NDIM] ... matrix A |
---|
| 160 | // aa double ... the square root of |
---|
| 161 | // (1/2) x (the sum of the off-diagonal elements squared) |
---|
| 162 | // ev double [NDIM] ... eigenvalues |
---|
| 163 | // evec double [NDIM][NDIM] ... eigenvectors |
---|
| 164 | // evec[i][k], i=1,2,...,ndim are the elements of the eigenvector |
---|
| 165 | // corresponding to the k-th eigenvalue ev[k] |
---|
| 166 | // vec double [NDIM][NDIM] ... the 2-dimensional array where the matrix elements are stored |
---|
| 167 | // lSort int ... |
---|
| 168 | // If lSort = 1, sort the eigenvalues d(i) in the descending order, i.e., |
---|
| 169 | // ev[1] >= ev[2] >= ... >= ev[ndim], and |
---|
| 170 | // if lSort = 0, in the ascending order, i.e., |
---|
| 171 | // ev[1] <= ev[2] <= ... <= ev[ndim]. |
---|
| 172 | // lMatSize int ... If 1 < ndim < NDIM, lMatSize = 1 |
---|
| 173 | // otherwise, lMatSize = 0 |
---|
| 174 | // p int [NDIM] ... index vector for sorting the eigenvalues |
---|
| 175 | // (public member functions) |
---|
| 176 | // setMatrix void ... give the matrix A |
---|
| 177 | // getEigenValue void ... get the eigenvalues |
---|
| 178 | // getEigenVector void ... get the eigenvectors |
---|
| 179 | // sortEigenpair void ... sort the eigenpairs |
---|
| 180 | // (private member functions) |
---|
| 181 | // ComputeEigenpair void ... compute the eigenpairs |
---|
| 182 | // matrixUpdate void ... each step of the Jacobi method, i.e., |
---|
| 183 | // update of the matrix A by Givens' transform. |
---|
| 184 | // getP void ... get the index vector p, i.e., sort the eigenvalues. |
---|
| 185 | // printMatrix void ... print the elements of the matrix A. |
---|
| 186 | // |
---|
| 187 | |
---|
| 188 | class EVJacobi |
---|
| 189 | { |
---|
| 190 | public: |
---|
| 191 | void setMatrix(int, double [][NDIM], int, int); |
---|
| 192 | void getEigenValue(double []); |
---|
| 193 | void getEigenVector(double [][NDIM]); |
---|
| 194 | void sortEigenpair(int); |
---|
| 195 | |
---|
| 196 | private: |
---|
| 197 | void ComputeEigenpair(int); |
---|
[4746] | 198 | void matrixUpdate(); |
---|
| 199 | void getP(); |
---|
| 200 | void printMatrix(); |
---|
[4627] | 201 | |
---|
| 202 | private: |
---|
| 203 | double a[NDIM][NDIM], aa, ev[NDIM], evec[NDIM][NDIM], vec[NDIM][NDIM]; |
---|
| 204 | int ndim, lSort, p[NDIM], lMatSize; |
---|
| 205 | }; |
---|
| 206 | |
---|
| 207 | //------------public member function of the class "EVJacobi"------------------------------ |
---|
| 208 | // |
---|
| 209 | // give the dimension "ndim" and the matrix "A" and compute the eigenpairs |
---|
| 210 | // (input) |
---|
| 211 | // ndim0 int ... dimension |
---|
| 212 | // a0 double[][NDIM] matrix A |
---|
| 213 | // lSort0 int ... lSort |
---|
| 214 | // If lSort = 1, sort the eigenvalues d(i) in the descending order, i.e., |
---|
| 215 | // ev[1] >= ev[2] >= ... >= ev[ndim], and |
---|
| 216 | // if lSort = 0, in the ascending order, i.e., |
---|
| 217 | // ev[1] <= ev[2] <= ... <= ev[ndim]. |
---|
| 218 | // l_print int ... |
---|
| 219 | // If l_print = 1, print the matrices during the iterations. |
---|
| 220 | // |
---|
| 221 | void EVJacobi::setMatrix(int ndim0, double a0[][NDIM], int lSort0, int l_print) |
---|
| 222 | { |
---|
| 223 | ndim = ndim0; |
---|
| 224 | if (ndim < NDIM && ndim > 1) |
---|
| 225 | { |
---|
| 226 | lMatSize = 1; |
---|
| 227 | lSort = lSort0; |
---|
| 228 | for (int i=1; i<=ndim; ++i) |
---|
| 229 | for (int j=1; j<=ndim; ++j) |
---|
| 230 | a[i][j] = a0[i][j]; |
---|
| 231 | // |
---|
| 232 | aa = 0.0; |
---|
| 233 | for (int i=1; i<=ndim; ++i) |
---|
| 234 | for (int j=1; j<=i-1; ++j) |
---|
| 235 | aa += a[i][j]*a[i][j]; |
---|
| 236 | aa = sqrt(aa); |
---|
| 237 | // |
---|
| 238 | ComputeEigenpair(l_print); |
---|
| 239 | getP(); |
---|
| 240 | } |
---|
| 241 | else |
---|
| 242 | { |
---|
| 243 | lMatSize = 0; |
---|
| 244 | printf("ndim = %d\n", ndim); |
---|
| 245 | printf("ndim must satisfy 1 < ndim < NDIM=%d\n", NDIM); |
---|
| 246 | } |
---|
| 247 | } |
---|
| 248 | // |
---|
| 249 | // get the eigenvalues |
---|
| 250 | // (input) |
---|
| 251 | // ev0[NDIM] double ... the array where the eigenvalues are written |
---|
| 252 | void EVJacobi::getEigenValue(double ev0[]) |
---|
| 253 | { |
---|
| 254 | for (int k=1; k<=ndim; ++k) ev0[k] = ev[p[k]]; |
---|
| 255 | } |
---|
| 256 | // |
---|
| 257 | // get the eigenvectors |
---|
| 258 | // (input) |
---|
| 259 | // evec0[NDIM][NDIM] double ... the two-dimensional array |
---|
| 260 | // where the eigenvectors are written in such a way that |
---|
| 261 | // evec0[k][i], i=1,2,...,ndim are the elements of the eigenvector |
---|
| 262 | // corresponding to the k-th eigenvalue ev0[k] |
---|
| 263 | // |
---|
| 264 | void EVJacobi::getEigenVector(double evec0[][NDIM]) |
---|
| 265 | { |
---|
| 266 | for (int k=1; k<=ndim; ++k) |
---|
| 267 | for (int i=1; i<=ndim; ++i) |
---|
| 268 | evec0[k][i] = evec[p[k]][i]; |
---|
| 269 | } |
---|
| 270 | // |
---|
| 271 | // sort the eigenpairs |
---|
| 272 | // (input) |
---|
| 273 | // lSort0 int |
---|
| 274 | // If lSort0 = 1, the eigenvalues are sorted in the descending order, i.e., |
---|
| 275 | // ev0[1] >= ev0[2] >= ... >= ev0[ndim] |
---|
| 276 | // and if lSort0 = 0, in the ascending order, i.e., |
---|
| 277 | // ev0[1] <= ev0[2] <= ... <= ev0[ndim] |
---|
| 278 | // |
---|
| 279 | void EVJacobi::sortEigenpair(int lSort0) |
---|
| 280 | { |
---|
| 281 | lSort = lSort0; |
---|
| 282 | getP(); |
---|
| 283 | } |
---|
| 284 | //-------private member function of the class "EVJacobi"----- |
---|
| 285 | // |
---|
| 286 | // compute the eigenpairs |
---|
| 287 | // (input) |
---|
| 288 | // l_print int |
---|
| 289 | // If l_print = 1, print the matrices during the iterations. |
---|
| 290 | // |
---|
| 291 | void EVJacobi::ComputeEigenpair(int l_print) |
---|
| 292 | { |
---|
| 293 | if (lMatSize==1) |
---|
| 294 | { |
---|
| 295 | if (l_print==1) |
---|
| 296 | { |
---|
| 297 | printf("step %d\n", 0); |
---|
| 298 | printMatrix(); |
---|
| 299 | printf("\n"); |
---|
| 300 | } |
---|
| 301 | // |
---|
| 302 | double eps = 1.0e-15, epsa = eps * aa; |
---|
| 303 | int kend = 1000, l_conv = 0; |
---|
| 304 | // |
---|
| 305 | for (int i=1; i<=ndim; ++i) |
---|
| 306 | for (int j=1; j<=ndim; ++j) |
---|
| 307 | vec[i][j] = 0.0; |
---|
| 308 | for (int i=1; i<=ndim; ++i) |
---|
| 309 | vec[i][i] = 1.0; |
---|
| 310 | // |
---|
| 311 | for (int k=1; k<=kend; ++k) |
---|
| 312 | { |
---|
| 313 | matrixUpdate(); |
---|
| 314 | double a1 = 0.0; |
---|
| 315 | for (int i=1; i<=ndim; ++i) |
---|
| 316 | for (int j=1; j<=i-1; ++j) |
---|
| 317 | a1 += a[i][j] * a[i][j]; |
---|
| 318 | a1 = sqrt(a1); |
---|
| 319 | if (a1 < epsa) |
---|
| 320 | { |
---|
| 321 | if (l_print==1) |
---|
| 322 | { |
---|
| 323 | printf("converged at step %d\n", k); |
---|
| 324 | printMatrix(); |
---|
| 325 | printf("\n"); |
---|
| 326 | } |
---|
| 327 | l_conv = 1; |
---|
| 328 | break; |
---|
| 329 | } |
---|
| 330 | if (l_print==1) |
---|
| 331 | if (k%10==0) |
---|
| 332 | { |
---|
| 333 | printf("step %d\n", k); |
---|
| 334 | printMatrix(); |
---|
| 335 | printf("\n"); |
---|
| 336 | } |
---|
| 337 | } |
---|
| 338 | // |
---|
| 339 | if (l_conv == 0) printf("Jacobi method not converged.\n"); |
---|
| 340 | for (int k=1; k<=ndim; ++k) |
---|
| 341 | { |
---|
| 342 | ev[k] = a[k][k]; |
---|
| 343 | for (int i=1; i<=ndim; ++i) evec[k][i] = vec[i][k]; |
---|
| 344 | } |
---|
| 345 | } |
---|
| 346 | } |
---|
| 347 | // |
---|
[4746] | 348 | void EVJacobi::printMatrix() |
---|
[4627] | 349 | { |
---|
| 350 | for (int i=1; i<=ndim; ++i) |
---|
| 351 | { |
---|
| 352 | for (int j=1; j<=ndim; ++j) printf("%8.1e ",a[i][j]); |
---|
| 353 | printf("\n"); |
---|
| 354 | } |
---|
| 355 | } |
---|
| 356 | // |
---|
[4746] | 357 | void EVJacobi::matrixUpdate() |
---|
[4627] | 358 | { |
---|
| 359 | double a_new[NDIM][NDIM], vec_new[NDIM][NDIM]; |
---|
| 360 | // |
---|
| 361 | int p=2, q=1; |
---|
| 362 | double amax = fabs(a[p][q]); |
---|
| 363 | for (int i=3; i<=ndim; ++i) |
---|
| 364 | for (int j=1; j<=i-1; ++j) |
---|
| 365 | if (fabs(a[i][j]) > amax) |
---|
| 366 | { |
---|
| 367 | p = i; |
---|
| 368 | q = j; |
---|
| 369 | amax = fabs(a[i][j]); |
---|
| 370 | } |
---|
| 371 | // |
---|
| 372 | // Givens' rotation by Rutishauser's rule |
---|
| 373 | // |
---|
| 374 | double z, t, c, s, u; |
---|
| 375 | z = (a[q][q] - a[p][p]) / (2.0 * a[p][q]); |
---|
| 376 | t = fabs(z) + sqrt(1.0 + z*z); |
---|
| 377 | if (z < 0.0) t = - t; |
---|
| 378 | t = 1.0 / t; |
---|
| 379 | c = 1.0 / sqrt(1.0 + t*t); |
---|
| 380 | s = c * t; |
---|
| 381 | u = s / (1.0 + c); |
---|
| 382 | // |
---|
| 383 | for (int i=1; i<=ndim; ++i) |
---|
| 384 | for (int j=1; j<=ndim; ++j) |
---|
| 385 | a_new[i][j] = a[i][j]; |
---|
| 386 | // |
---|
| 387 | a_new[p][p] = a[p][p] - t * a[p][q]; |
---|
| 388 | a_new[q][q] = a[q][q] + t * a[p][q]; |
---|
| 389 | a_new[p][q] = 0.0; |
---|
| 390 | a_new[q][p] = 0.0; |
---|
| 391 | for (int j=1; j<=ndim; ++j) |
---|
| 392 | if (j!=p && j!=q) |
---|
| 393 | { |
---|
| 394 | a_new[p][j] = a[p][j] - s * (a[q][j] + u * a[p][j]); |
---|
| 395 | a_new[j][p] = a_new[p][j]; |
---|
| 396 | a_new[q][j] = a[q][j] + s * (a[p][j] - u * a[q][j]); |
---|
| 397 | a_new[j][q] = a_new[q][j]; |
---|
| 398 | } |
---|
| 399 | // |
---|
| 400 | for (int i=1; i<=ndim; ++i) |
---|
| 401 | { |
---|
| 402 | vec_new[i][p] = vec[i][p] * c - vec[i][q] * s; |
---|
| 403 | vec_new[i][q] = vec[i][p] * s + vec[i][q] * c; |
---|
| 404 | for (int j=1; j<=ndim; ++j) |
---|
| 405 | if (j!=p && j!=q) vec_new[i][j] = vec[i][j]; |
---|
| 406 | } |
---|
| 407 | // |
---|
| 408 | for (int i=1; i<=ndim; ++i) |
---|
| 409 | for (int j=1; j<=ndim; ++j) |
---|
| 410 | { |
---|
| 411 | a[i][j] = a_new[i][j]; |
---|
| 412 | vec[i][j] = vec_new[i][j]; |
---|
| 413 | } |
---|
| 414 | } |
---|
| 415 | // |
---|
| 416 | // sort the eigenpairs |
---|
| 417 | // If l_print=1, sort the eigenvalues in the descending order, i.e., |
---|
| 418 | // ev[1] >= ev[2] >= ... >= ev[ndim], and |
---|
| 419 | // if l_print=0, in the ascending order, i.e., |
---|
| 420 | // ev[1] <= ev[2] <= ... <= ev[ndim]. |
---|
| 421 | // |
---|
[4746] | 422 | void EVJacobi::getP() |
---|
[4627] | 423 | { |
---|
| 424 | for (int i=1; i<=ndim; ++i) p[i] = i; |
---|
| 425 | // |
---|
| 426 | if (lSort==1) |
---|
| 427 | { |
---|
| 428 | for (int k=1; k<=ndim; ++k) |
---|
| 429 | { |
---|
| 430 | double emax = ev[p[k]]; |
---|
| 431 | for (int i=k+1; i<=ndim; ++i) |
---|
| 432 | { |
---|
| 433 | if (emax < ev[p[i]]) |
---|
| 434 | { |
---|
| 435 | emax = ev[p[i]]; |
---|
| 436 | int pp = p[k]; |
---|
| 437 | p[k] = p[i]; |
---|
| 438 | p[i] = pp; |
---|
| 439 | } |
---|
| 440 | } |
---|
| 441 | } |
---|
| 442 | } |
---|
| 443 | if (lSort==0) |
---|
| 444 | { |
---|
| 445 | for (int k=1; k<=ndim; ++k) |
---|
| 446 | { |
---|
| 447 | double emin = ev[p[k]]; |
---|
| 448 | for (int i=k+1; i<=ndim; ++i) |
---|
| 449 | { |
---|
| 450 | if (emin > ev[p[i]]) |
---|
| 451 | { |
---|
| 452 | emin = ev[p[i]]; |
---|
| 453 | int pp = p[k]; |
---|
| 454 | p[k] = p[i]; |
---|
| 455 | p[i] = pp; |
---|
| 456 | } |
---|
| 457 | } |
---|
| 458 | } |
---|
| 459 | } |
---|
| 460 | } |
---|
| 461 | |
---|
| 462 | |
---|
| 463 | |
---|
[5493] | 464 | // void jacobi(float **A, float *D, float **V, int *nRot) { |
---|
[4627] | 465 | // |
---|
[5493] | 466 | // int n = 3; |
---|
[4627] | 467 | // |
---|
[5493] | 468 | // float *B, *Z; |
---|
| 469 | // double c=0.0f, g=0.0f, h=0.0f, s=0.0f, sm=0.0f, t=0.0f, tau=0.0f, theta=0.0f, tresh=0.0f; |
---|
| 470 | // int i = 0, j = 0, ip = 0, iq = 0; |
---|
| 471 | // |
---|
| 472 | // //void *vmblock1 = NULL; |
---|
| 473 | // |
---|
[4627] | 474 | // //allocate vectors B, Z |
---|
[5493] | 475 | // //vmblock1 = vminit(); |
---|
[4628] | 476 | // //B = (float *) vmalloc(vmblock1, VEKTOR, 100, 0); |
---|
| 477 | // //Z = (float *) vmalloc(vmblock1, VEKTOR, 100, 0); |
---|
[5493] | 478 | // B = new float[n+1]; |
---|
| 479 | // Z = new float[n+1]; |
---|
[4627] | 480 | // |
---|
| 481 | // //initialize V to identity matrix |
---|
| 482 | // for(int i = 1; i <= n; i++) |
---|
| 483 | // { |
---|
| 484 | // for(int j = 1; j <= n; j++) |
---|
| 485 | // V[i][j] = 0; |
---|
| 486 | // V[i][i] = 1; |
---|
| 487 | // } |
---|
| 488 | // |
---|
| 489 | // for(int i = 1; i <= n; i++) |
---|
| 490 | // { |
---|
| 491 | // B[i] = A[i][i]; |
---|
| 492 | // D[i] = B[i]; |
---|
| 493 | // Z[i] = 0; |
---|
| 494 | // } |
---|
| 495 | // |
---|
| 496 | // *nRot = 0; |
---|
| 497 | // for(int i = 1; i<=50; i++) |
---|
| 498 | // { |
---|
| 499 | // sm = 0; |
---|
| 500 | // for(int k = 1; k < n; k++) //sum off-diagonal elements |
---|
| 501 | // for (int l = k + 1; l <= n; k++) |
---|
| 502 | // sm = sm + fabs(A[k][l]); |
---|
| 503 | // if ( sm == 0 ) |
---|
| 504 | // { |
---|
| 505 | // //vmfree(vmblock1); |
---|
[5493] | 506 | // delete[] B; |
---|
| 507 | // delete[] Z; |
---|
[4627] | 508 | // return; //normal return |
---|
| 509 | // } |
---|
| 510 | // if (i < 4) |
---|
| 511 | // tresh = 0.2 * sm * sm; |
---|
| 512 | // else |
---|
| 513 | // tresh = 0; |
---|
| 514 | // for(int k = 1; k < n; k++) |
---|
| 515 | // { |
---|
[5493] | 516 | // for (iq=ip+1; iq<=n; iq++) { |
---|
[4627] | 517 | // g=100*fabs(A[ip][iq]); |
---|
| 518 | // // after 4 sweeps, skip the rotation if the off-diagonal element is small |
---|
| 519 | // if ((i > 4) && (fabs(D[ip])+g == fabs(D[ip])) && (fabs(D[iq])+g == fabs(D[iq]))) |
---|
| 520 | // A[ip][iq]=0; |
---|
| 521 | // else if (fabs(A[ip][iq]) > tresh) { |
---|
| 522 | // h=D[iq]-D[ip]; |
---|
| 523 | // if (fabs(h)+g == fabs(h)) |
---|
| 524 | // t=A[ip][iq]/h; |
---|
| 525 | // else { |
---|
| 526 | // theta=0.5*h/A[ip][iq]; |
---|
| 527 | // t=1/(fabs(theta)+sqrt(1.0+theta*theta)); |
---|
| 528 | // if (theta < 0) t=-t; |
---|
| 529 | // } |
---|
| 530 | // c=1.0/sqrt(1.0+t*t); |
---|
| 531 | // s=t*c; |
---|
| 532 | // tau=s/(1.0+c); |
---|
| 533 | // h=t*A[ip][iq]; |
---|
| 534 | // Z[ip] -= h; |
---|
| 535 | // Z[iq] += h; |
---|
| 536 | // D[ip] -= h; |
---|
| 537 | // D[iq] += h; |
---|
| 538 | // A[ip][iq]=0; |
---|
| 539 | // for (j=1; j<ip; j++) { |
---|
| 540 | // g=A[j][ip]; |
---|
| 541 | // h=A[j][iq]; |
---|
| 542 | // A[j][ip] = g-s*(h+g*tau); |
---|
| 543 | // A[j][iq] = h+s*(g-h*tau); |
---|
| 544 | // } |
---|
| 545 | // for (j=ip+1; j<iq; j++) { |
---|
| 546 | // g=A[ip][j]; |
---|
| 547 | // h=A[j][iq]; |
---|
| 548 | // A[ip][j] = g-s*(h+g*tau); |
---|
| 549 | // A[j][iq] = h+s*(g-h*tau); |
---|
| 550 | // } |
---|
[5493] | 551 | // for (j=iq+1; j<=n; j++) { |
---|
[4627] | 552 | // g=A[ip][j]; |
---|
| 553 | // h=A[iq][j]; |
---|
| 554 | // A[ip][j] = g-s*(h+g*tau); |
---|
| 555 | // A[iq][j] = h+s*(g-h*tau); |
---|
| 556 | // } |
---|
[5493] | 557 | // for (j=1; j<=n; j++) { |
---|
[4627] | 558 | // g=V[j][ip]; |
---|
| 559 | // h=V[j][iq]; |
---|
| 560 | // V[j][ip] = g-s*(h+g*tau); |
---|
| 561 | // V[j][iq] = h+s*(g-h*tau); |
---|
| 562 | // } |
---|
[5493] | 563 | // *nRot=*nRot+1; |
---|
[4627] | 564 | // } //end ((i.gt.4)...else if |
---|
| 565 | // } // main iq loop |
---|
| 566 | // } // main ip loop |
---|
[5493] | 567 | // for (ip=1; ip<=n; ip++) { |
---|
[4627] | 568 | // B[ip] += Z[ip]; |
---|
| 569 | // D[ip]=B[ip]; |
---|
| 570 | // Z[ip]=0; |
---|
| 571 | // } |
---|
| 572 | // } //end of main i loop |
---|
| 573 | // printf("\n 50 iterations !\n"); |
---|
[5493] | 574 | // //vmfree(vmblock1); |
---|
| 575 | // delete[] Z; |
---|
| 576 | // delete[] B; |
---|
[4627] | 577 | // return; //too many iterations |
---|
| 578 | // } |
---|
| 579 | |
---|