1 | /*! |
---|
2 | * @file lin_alg.h |
---|
3 | * Definition of some important linear algebra formulas |
---|
4 | |
---|
5 | compute the eigenpairs (eigenvalues and eigenvectors) of a real symmetric matrix "A" by the Jacobi method |
---|
6 | */ |
---|
7 | |
---|
8 | |
---|
9 | |
---|
10 | /************************************************************ |
---|
11 | * This subroutine computes all eigenvalues and eigenvectors * |
---|
12 | * of a real symmetric square matrix A(N,N). On output, ele- * |
---|
13 | * ments of A above the diagonal are destroyed. D(N) returns * |
---|
14 | * the eigenvalues of matrix A. V(N,N) contains, on output, * |
---|
15 | * the eigenvectors of A by columns. THe normalization to * |
---|
16 | * unity is made by main program before printing results. * |
---|
17 | * NROT returns the number of Jacobi matrix rotations which * |
---|
18 | * were required. * |
---|
19 | * --------------------------------------------------------- * |
---|
20 | * Ref.:"NUMERICAL RECIPES IN FORTRAN, Cambridge University * |
---|
21 | * Press, 1986, chap. 11, pages 346-348". * |
---|
22 | * * |
---|
23 | * C++ version by J-P Moreau, Paris. * |
---|
24 | ************************************************************/ |
---|
25 | void JacobI(float **A, float *D, float **V, int *NROT) { |
---|
26 | |
---|
27 | int N = 3; |
---|
28 | |
---|
29 | float *B, *Z; |
---|
30 | double c=0.0f, g=0.0f, h=0.0f, s=0.0f, sm=0.0f, t=0.0f, tau=0.0f, theta=0.0f, tresh=0.0f; |
---|
31 | int i = 0, j = 0, ip = 0, iq = 0; |
---|
32 | |
---|
33 | //allocate vectors B, Z |
---|
34 | B = new float[N]; |
---|
35 | Z = new float[N]; |
---|
36 | |
---|
37 | // initialize V to identity matrix |
---|
38 | for( ip = 0; ip < N; ip++) { |
---|
39 | for( iq = 0; iq < N; iq++) |
---|
40 | V[ip][iq] = 0.0f; |
---|
41 | V[ip][ip] = 1.0f; |
---|
42 | } |
---|
43 | // initialize B,D to the diagonal of A |
---|
44 | for( ip = 0; ip < N; ip++) { |
---|
45 | B[ip] = A[ip][ip]; |
---|
46 | D[ip] = B[ip]; |
---|
47 | Z[ip] = 0.0f; |
---|
48 | } |
---|
49 | |
---|
50 | *NROT = 0; |
---|
51 | // make maximaly 50 iterations |
---|
52 | for( i = 1; i <= 50; i++) { |
---|
53 | sm = 0.0f; |
---|
54 | |
---|
55 | // sum off-diagonal elements |
---|
56 | for( ip = 0; ip < N - 1; ip++) |
---|
57 | for( iq = ip + 1; iq < N; iq++) |
---|
58 | sm += fabs(A[ip][iq]); |
---|
59 | |
---|
60 | // is it already a diagonal matrix? |
---|
61 | if( sm == 0) |
---|
62 | { |
---|
63 | delete[] B; |
---|
64 | delete[] Z; |
---|
65 | return; |
---|
66 | } |
---|
67 | // just adjust this on the first 3 sweeps |
---|
68 | if( i < 4) |
---|
69 | tresh = 0.2 * sm / (N * N) ; |
---|
70 | else |
---|
71 | tresh = 0.0f; |
---|
72 | |
---|
73 | for( ip = 0; ip < (N-1); ip++) { |
---|
74 | for( iq = ip + 1; iq < N; iq++) { |
---|
75 | |
---|
76 | g = 100.0f * fabs(A[ip][iq]); |
---|
77 | // after 4 sweeps, skip the rotation if the off-diagonal element is small |
---|
78 | if( (i > 4) && ( fabs(D[ip]) + g == fabs(D[ip]) ) && ( fabs(D[iq]) + g == fabs(D[iq]) ) ) |
---|
79 | A[ip][iq] = 0.0f; |
---|
80 | else if( fabs(A[ip][iq]) > tresh) { |
---|
81 | h = D[iq] - D[ip]; |
---|
82 | if (fabs(h) + g == fabs(h)) |
---|
83 | t = A[ip][iq] / h; |
---|
84 | else { |
---|
85 | theta = 0.5f * h / A[ip][iq]; |
---|
86 | t = 1.0f / (fabs(theta) + sqrt(1.0f + theta * theta)); |
---|
87 | if( theta < 0.0f) |
---|
88 | t = -t; |
---|
89 | } |
---|
90 | c = 1.0f / sqrt(1.0f + t * t); |
---|
91 | s = t * c; |
---|
92 | tau = s / (1.0f + c); |
---|
93 | h = t * A[ip][iq]; |
---|
94 | Z[ip] -= h; |
---|
95 | Z[iq] += h; |
---|
96 | D[ip] -= h; |
---|
97 | D[iq] += h; |
---|
98 | A[ip][iq] = 0.0f; |
---|
99 | |
---|
100 | for( j = 0; j < (ip - 1); j++) { |
---|
101 | g = A[j][ip]; |
---|
102 | h = A[j][iq]; |
---|
103 | A[j][ip] = g - s * (h + g * tau); |
---|
104 | A[j][iq] = h + s * (g - h * tau); |
---|
105 | } |
---|
106 | for( j = (ip + 1); j < (iq - 1); j++) { |
---|
107 | g = A[ip][j]; |
---|
108 | h = A[j][iq]; |
---|
109 | A[ip][j] = g - s * (h + g * tau); |
---|
110 | A[j][iq] = h + s * (g - h * tau); |
---|
111 | } |
---|
112 | for( j = (iq + 1); j < N; j++) { |
---|
113 | g = A[ip][j]; |
---|
114 | h = A[iq][j]; |
---|
115 | A[ip][j] = g - s * (h + g * tau); |
---|
116 | A[iq][j] = h + s * (g - h * tau); |
---|
117 | } |
---|
118 | for( j = 0; j < N; j++) { |
---|
119 | g = V[j][ip]; |
---|
120 | h = V[j][iq]; |
---|
121 | V[j][ip] = g - s * (h + g * tau); |
---|
122 | V[j][iq] = h + s * (g - h * tau); |
---|
123 | } |
---|
124 | *NROT += 1; |
---|
125 | } //end ((i.gt.4)...else if |
---|
126 | } // main iq loop |
---|
127 | } // main ip loop |
---|
128 | for( ip = 0; ip < N; ip++) { |
---|
129 | B[ip] += Z[ip]; |
---|
130 | D[ip] = B[ip]; |
---|
131 | Z[ip] = 0.0f; |
---|
132 | } |
---|
133 | } //end of main i loop |
---|
134 | delete[] B; |
---|
135 | delete[] Z; |
---|
136 | return; //too many iterations |
---|
137 | } |
---|
138 | |
---|
139 | |
---|
140 | |
---|
141 | |
---|
142 | |
---|
143 | #include "abstract_model.h" |
---|
144 | |
---|
145 | #include <stdio.h> |
---|
146 | #include <math.h> |
---|
147 | |
---|
148 | #define NDIM 3 |
---|
149 | |
---|
150 | |
---|
151 | typedef float MatrixX[3][3]; |
---|
152 | |
---|
153 | // |
---|
154 | // class "EVJacobi" for computing the eigenpairs |
---|
155 | // (members) |
---|
156 | // ndim int ... dimension |
---|
157 | // "ndim" must satisfy 1 < ndim < NDIM |
---|
158 | // ("NDIM" is given above). |
---|
159 | // a double [NDIM][NDIM] ... matrix A |
---|
160 | // aa double ... the square root of |
---|
161 | // (1/2) x (the sum of the off-diagonal elements squared) |
---|
162 | // ev double [NDIM] ... eigenvalues |
---|
163 | // evec double [NDIM][NDIM] ... eigenvectors |
---|
164 | // evec[i][k], i=1,2,...,ndim are the elements of the eigenvector |
---|
165 | // corresponding to the k-th eigenvalue ev[k] |
---|
166 | // vec double [NDIM][NDIM] ... the 2-dimensional array where the matrix elements are stored |
---|
167 | // lSort int ... |
---|
168 | // If lSort = 1, sort the eigenvalues d(i) in the descending order, i.e., |
---|
169 | // ev[1] >= ev[2] >= ... >= ev[ndim], and |
---|
170 | // if lSort = 0, in the ascending order, i.e., |
---|
171 | // ev[1] <= ev[2] <= ... <= ev[ndim]. |
---|
172 | // lMatSize int ... If 1 < ndim < NDIM, lMatSize = 1 |
---|
173 | // otherwise, lMatSize = 0 |
---|
174 | // p int [NDIM] ... index vector for sorting the eigenvalues |
---|
175 | // (public member functions) |
---|
176 | // setMatrix void ... give the matrix A |
---|
177 | // getEigenValue void ... get the eigenvalues |
---|
178 | // getEigenVector void ... get the eigenvectors |
---|
179 | // sortEigenpair void ... sort the eigenpairs |
---|
180 | // (private member functions) |
---|
181 | // ComputeEigenpair void ... compute the eigenpairs |
---|
182 | // matrixUpdate void ... each step of the Jacobi method, i.e., |
---|
183 | // update of the matrix A by Givens' transform. |
---|
184 | // getP void ... get the index vector p, i.e., sort the eigenvalues. |
---|
185 | // printMatrix void ... print the elements of the matrix A. |
---|
186 | // |
---|
187 | |
---|
188 | class EVJacobi |
---|
189 | { |
---|
190 | public: |
---|
191 | void setMatrix(int, double [][NDIM], int, int); |
---|
192 | void getEigenValue(double []); |
---|
193 | void getEigenVector(double [][NDIM]); |
---|
194 | void sortEigenpair(int); |
---|
195 | |
---|
196 | private: |
---|
197 | void ComputeEigenpair(int); |
---|
198 | void matrixUpdate(); |
---|
199 | void getP(); |
---|
200 | void printMatrix(); |
---|
201 | |
---|
202 | private: |
---|
203 | double a[NDIM][NDIM], aa, ev[NDIM], evec[NDIM][NDIM], vec[NDIM][NDIM]; |
---|
204 | int ndim, lSort, p[NDIM], lMatSize; |
---|
205 | }; |
---|
206 | |
---|
207 | //------------public member function of the class "EVJacobi"------------------------------ |
---|
208 | // |
---|
209 | // give the dimension "ndim" and the matrix "A" and compute the eigenpairs |
---|
210 | // (input) |
---|
211 | // ndim0 int ... dimension |
---|
212 | // a0 double[][NDIM] matrix A |
---|
213 | // lSort0 int ... lSort |
---|
214 | // If lSort = 1, sort the eigenvalues d(i) in the descending order, i.e., |
---|
215 | // ev[1] >= ev[2] >= ... >= ev[ndim], and |
---|
216 | // if lSort = 0, in the ascending order, i.e., |
---|
217 | // ev[1] <= ev[2] <= ... <= ev[ndim]. |
---|
218 | // l_print int ... |
---|
219 | // If l_print = 1, print the matrices during the iterations. |
---|
220 | // |
---|
221 | void EVJacobi::setMatrix(int ndim0, double a0[][NDIM], int lSort0, int l_print) |
---|
222 | { |
---|
223 | ndim = ndim0; |
---|
224 | if (ndim < NDIM && ndim > 1) |
---|
225 | { |
---|
226 | lMatSize = 1; |
---|
227 | lSort = lSort0; |
---|
228 | for (int i=1; i<=ndim; ++i) |
---|
229 | for (int j=1; j<=ndim; ++j) |
---|
230 | a[i][j] = a0[i][j]; |
---|
231 | // |
---|
232 | aa = 0.0; |
---|
233 | for (int i=1; i<=ndim; ++i) |
---|
234 | for (int j=1; j<=i-1; ++j) |
---|
235 | aa += a[i][j]*a[i][j]; |
---|
236 | aa = sqrt(aa); |
---|
237 | // |
---|
238 | ComputeEigenpair(l_print); |
---|
239 | getP(); |
---|
240 | } |
---|
241 | else |
---|
242 | { |
---|
243 | lMatSize = 0; |
---|
244 | printf("ndim = %d\n", ndim); |
---|
245 | printf("ndim must satisfy 1 < ndim < NDIM=%d\n", NDIM); |
---|
246 | } |
---|
247 | } |
---|
248 | // |
---|
249 | // get the eigenvalues |
---|
250 | // (input) |
---|
251 | // ev0[NDIM] double ... the array where the eigenvalues are written |
---|
252 | void EVJacobi::getEigenValue(double ev0[]) |
---|
253 | { |
---|
254 | for (int k=1; k<=ndim; ++k) ev0[k] = ev[p[k]]; |
---|
255 | } |
---|
256 | // |
---|
257 | // get the eigenvectors |
---|
258 | // (input) |
---|
259 | // evec0[NDIM][NDIM] double ... the two-dimensional array |
---|
260 | // where the eigenvectors are written in such a way that |
---|
261 | // evec0[k][i], i=1,2,...,ndim are the elements of the eigenvector |
---|
262 | // corresponding to the k-th eigenvalue ev0[k] |
---|
263 | // |
---|
264 | void EVJacobi::getEigenVector(double evec0[][NDIM]) |
---|
265 | { |
---|
266 | for (int k=1; k<=ndim; ++k) |
---|
267 | for (int i=1; i<=ndim; ++i) |
---|
268 | evec0[k][i] = evec[p[k]][i]; |
---|
269 | } |
---|
270 | // |
---|
271 | // sort the eigenpairs |
---|
272 | // (input) |
---|
273 | // lSort0 int |
---|
274 | // If lSort0 = 1, the eigenvalues are sorted in the descending order, i.e., |
---|
275 | // ev0[1] >= ev0[2] >= ... >= ev0[ndim] |
---|
276 | // and if lSort0 = 0, in the ascending order, i.e., |
---|
277 | // ev0[1] <= ev0[2] <= ... <= ev0[ndim] |
---|
278 | // |
---|
279 | void EVJacobi::sortEigenpair(int lSort0) |
---|
280 | { |
---|
281 | lSort = lSort0; |
---|
282 | getP(); |
---|
283 | } |
---|
284 | //-------private member function of the class "EVJacobi"----- |
---|
285 | // |
---|
286 | // compute the eigenpairs |
---|
287 | // (input) |
---|
288 | // l_print int |
---|
289 | // If l_print = 1, print the matrices during the iterations. |
---|
290 | // |
---|
291 | void EVJacobi::ComputeEigenpair(int l_print) |
---|
292 | { |
---|
293 | if (lMatSize==1) |
---|
294 | { |
---|
295 | if (l_print==1) |
---|
296 | { |
---|
297 | printf("step %d\n", 0); |
---|
298 | printMatrix(); |
---|
299 | printf("\n"); |
---|
300 | } |
---|
301 | // |
---|
302 | double eps = 1.0e-15, epsa = eps * aa; |
---|
303 | int kend = 1000, l_conv = 0; |
---|
304 | // |
---|
305 | for (int i=1; i<=ndim; ++i) |
---|
306 | for (int j=1; j<=ndim; ++j) |
---|
307 | vec[i][j] = 0.0; |
---|
308 | for (int i=1; i<=ndim; ++i) |
---|
309 | vec[i][i] = 1.0; |
---|
310 | // |
---|
311 | for (int k=1; k<=kend; ++k) |
---|
312 | { |
---|
313 | matrixUpdate(); |
---|
314 | double a1 = 0.0; |
---|
315 | for (int i=1; i<=ndim; ++i) |
---|
316 | for (int j=1; j<=i-1; ++j) |
---|
317 | a1 += a[i][j] * a[i][j]; |
---|
318 | a1 = sqrt(a1); |
---|
319 | if (a1 < epsa) |
---|
320 | { |
---|
321 | if (l_print==1) |
---|
322 | { |
---|
323 | printf("converged at step %d\n", k); |
---|
324 | printMatrix(); |
---|
325 | printf("\n"); |
---|
326 | } |
---|
327 | l_conv = 1; |
---|
328 | break; |
---|
329 | } |
---|
330 | if (l_print==1) |
---|
331 | if (k%10==0) |
---|
332 | { |
---|
333 | printf("step %d\n", k); |
---|
334 | printMatrix(); |
---|
335 | printf("\n"); |
---|
336 | } |
---|
337 | } |
---|
338 | // |
---|
339 | if (l_conv == 0) printf("Jacobi method not converged.\n"); |
---|
340 | for (int k=1; k<=ndim; ++k) |
---|
341 | { |
---|
342 | ev[k] = a[k][k]; |
---|
343 | for (int i=1; i<=ndim; ++i) evec[k][i] = vec[i][k]; |
---|
344 | } |
---|
345 | } |
---|
346 | } |
---|
347 | // |
---|
348 | void EVJacobi::printMatrix() |
---|
349 | { |
---|
350 | for (int i=1; i<=ndim; ++i) |
---|
351 | { |
---|
352 | for (int j=1; j<=ndim; ++j) printf("%8.1e ",a[i][j]); |
---|
353 | printf("\n"); |
---|
354 | } |
---|
355 | } |
---|
356 | // |
---|
357 | void EVJacobi::matrixUpdate() |
---|
358 | { |
---|
359 | double a_new[NDIM][NDIM], vec_new[NDIM][NDIM]; |
---|
360 | // |
---|
361 | int p=2, q=1; |
---|
362 | double amax = fabs(a[p][q]); |
---|
363 | for (int i=3; i<=ndim; ++i) |
---|
364 | for (int j=1; j<=i-1; ++j) |
---|
365 | if (fabs(a[i][j]) > amax) |
---|
366 | { |
---|
367 | p = i; |
---|
368 | q = j; |
---|
369 | amax = fabs(a[i][j]); |
---|
370 | } |
---|
371 | // |
---|
372 | // Givens' rotation by Rutishauser's rule |
---|
373 | // |
---|
374 | double z, t, c, s, u; |
---|
375 | z = (a[q][q] - a[p][p]) / (2.0 * a[p][q]); |
---|
376 | t = fabs(z) + sqrt(1.0 + z*z); |
---|
377 | if (z < 0.0) t = - t; |
---|
378 | t = 1.0 / t; |
---|
379 | c = 1.0 / sqrt(1.0 + t*t); |
---|
380 | s = c * t; |
---|
381 | u = s / (1.0 + c); |
---|
382 | // |
---|
383 | for (int i=1; i<=ndim; ++i) |
---|
384 | for (int j=1; j<=ndim; ++j) |
---|
385 | a_new[i][j] = a[i][j]; |
---|
386 | // |
---|
387 | a_new[p][p] = a[p][p] - t * a[p][q]; |
---|
388 | a_new[q][q] = a[q][q] + t * a[p][q]; |
---|
389 | a_new[p][q] = 0.0; |
---|
390 | a_new[q][p] = 0.0; |
---|
391 | for (int j=1; j<=ndim; ++j) |
---|
392 | if (j!=p && j!=q) |
---|
393 | { |
---|
394 | a_new[p][j] = a[p][j] - s * (a[q][j] + u * a[p][j]); |
---|
395 | a_new[j][p] = a_new[p][j]; |
---|
396 | a_new[q][j] = a[q][j] + s * (a[p][j] - u * a[q][j]); |
---|
397 | a_new[j][q] = a_new[q][j]; |
---|
398 | } |
---|
399 | // |
---|
400 | for (int i=1; i<=ndim; ++i) |
---|
401 | { |
---|
402 | vec_new[i][p] = vec[i][p] * c - vec[i][q] * s; |
---|
403 | vec_new[i][q] = vec[i][p] * s + vec[i][q] * c; |
---|
404 | for (int j=1; j<=ndim; ++j) |
---|
405 | if (j!=p && j!=q) vec_new[i][j] = vec[i][j]; |
---|
406 | } |
---|
407 | // |
---|
408 | for (int i=1; i<=ndim; ++i) |
---|
409 | for (int j=1; j<=ndim; ++j) |
---|
410 | { |
---|
411 | a[i][j] = a_new[i][j]; |
---|
412 | vec[i][j] = vec_new[i][j]; |
---|
413 | } |
---|
414 | } |
---|
415 | // |
---|
416 | // sort the eigenpairs |
---|
417 | // If l_print=1, sort the eigenvalues in the descending order, i.e., |
---|
418 | // ev[1] >= ev[2] >= ... >= ev[ndim], and |
---|
419 | // if l_print=0, in the ascending order, i.e., |
---|
420 | // ev[1] <= ev[2] <= ... <= ev[ndim]. |
---|
421 | // |
---|
422 | void EVJacobi::getP() |
---|
423 | { |
---|
424 | for (int i=1; i<=ndim; ++i) p[i] = i; |
---|
425 | // |
---|
426 | if (lSort==1) |
---|
427 | { |
---|
428 | for (int k=1; k<=ndim; ++k) |
---|
429 | { |
---|
430 | double emax = ev[p[k]]; |
---|
431 | for (int i=k+1; i<=ndim; ++i) |
---|
432 | { |
---|
433 | if (emax < ev[p[i]]) |
---|
434 | { |
---|
435 | emax = ev[p[i]]; |
---|
436 | int pp = p[k]; |
---|
437 | p[k] = p[i]; |
---|
438 | p[i] = pp; |
---|
439 | } |
---|
440 | } |
---|
441 | } |
---|
442 | } |
---|
443 | if (lSort==0) |
---|
444 | { |
---|
445 | for (int k=1; k<=ndim; ++k) |
---|
446 | { |
---|
447 | double emin = ev[p[k]]; |
---|
448 | for (int i=k+1; i<=ndim; ++i) |
---|
449 | { |
---|
450 | if (emin > ev[p[i]]) |
---|
451 | { |
---|
452 | emin = ev[p[i]]; |
---|
453 | int pp = p[k]; |
---|
454 | p[k] = p[i]; |
---|
455 | p[i] = pp; |
---|
456 | } |
---|
457 | } |
---|
458 | } |
---|
459 | } |
---|
460 | } |
---|
461 | |
---|
462 | |
---|
463 | |
---|
464 | // void jacobi(float **A, float *D, float **V, int *nRot) { |
---|
465 | // |
---|
466 | // int n = 3; |
---|
467 | // |
---|
468 | // float *B, *Z; |
---|
469 | // double c=0.0f, g=0.0f, h=0.0f, s=0.0f, sm=0.0f, t=0.0f, tau=0.0f, theta=0.0f, tresh=0.0f; |
---|
470 | // int i = 0, j = 0, ip = 0, iq = 0; |
---|
471 | // |
---|
472 | // //void *vmblock1 = NULL; |
---|
473 | // |
---|
474 | // //allocate vectors B, Z |
---|
475 | // //vmblock1 = vminit(); |
---|
476 | // //B = (float *) vmalloc(vmblock1, VEKTOR, 100, 0); |
---|
477 | // //Z = (float *) vmalloc(vmblock1, VEKTOR, 100, 0); |
---|
478 | // B = new float[n+1]; |
---|
479 | // Z = new float[n+1]; |
---|
480 | // |
---|
481 | // //initialize V to identity matrix |
---|
482 | // for(int i = 1; i <= n; i++) |
---|
483 | // { |
---|
484 | // for(int j = 1; j <= n; j++) |
---|
485 | // V[i][j] = 0; |
---|
486 | // V[i][i] = 1; |
---|
487 | // } |
---|
488 | // |
---|
489 | // for(int i = 1; i <= n; i++) |
---|
490 | // { |
---|
491 | // B[i] = A[i][i]; |
---|
492 | // D[i] = B[i]; |
---|
493 | // Z[i] = 0; |
---|
494 | // } |
---|
495 | // |
---|
496 | // *nRot = 0; |
---|
497 | // for(int i = 1; i<=50; i++) |
---|
498 | // { |
---|
499 | // sm = 0; |
---|
500 | // for(int k = 1; k < n; k++) //sum off-diagonal elements |
---|
501 | // for (int l = k + 1; l <= n; k++) |
---|
502 | // sm = sm + fabs(A[k][l]); |
---|
503 | // if ( sm == 0 ) |
---|
504 | // { |
---|
505 | // //vmfree(vmblock1); |
---|
506 | // delete[] B; |
---|
507 | // delete[] Z; |
---|
508 | // return; //normal return |
---|
509 | // } |
---|
510 | // if (i < 4) |
---|
511 | // tresh = 0.2 * sm * sm; |
---|
512 | // else |
---|
513 | // tresh = 0; |
---|
514 | // for(int k = 1; k < n; k++) |
---|
515 | // { |
---|
516 | // for (iq=ip+1; iq<=n; iq++) { |
---|
517 | // g=100*fabs(A[ip][iq]); |
---|
518 | // // after 4 sweeps, skip the rotation if the off-diagonal element is small |
---|
519 | // if ((i > 4) && (fabs(D[ip])+g == fabs(D[ip])) && (fabs(D[iq])+g == fabs(D[iq]))) |
---|
520 | // A[ip][iq]=0; |
---|
521 | // else if (fabs(A[ip][iq]) > tresh) { |
---|
522 | // h=D[iq]-D[ip]; |
---|
523 | // if (fabs(h)+g == fabs(h)) |
---|
524 | // t=A[ip][iq]/h; |
---|
525 | // else { |
---|
526 | // theta=0.5*h/A[ip][iq]; |
---|
527 | // t=1/(fabs(theta)+sqrt(1.0+theta*theta)); |
---|
528 | // if (theta < 0) t=-t; |
---|
529 | // } |
---|
530 | // c=1.0/sqrt(1.0+t*t); |
---|
531 | // s=t*c; |
---|
532 | // tau=s/(1.0+c); |
---|
533 | // h=t*A[ip][iq]; |
---|
534 | // Z[ip] -= h; |
---|
535 | // Z[iq] += h; |
---|
536 | // D[ip] -= h; |
---|
537 | // D[iq] += h; |
---|
538 | // A[ip][iq]=0; |
---|
539 | // for (j=1; j<ip; j++) { |
---|
540 | // g=A[j][ip]; |
---|
541 | // h=A[j][iq]; |
---|
542 | // A[j][ip] = g-s*(h+g*tau); |
---|
543 | // A[j][iq] = h+s*(g-h*tau); |
---|
544 | // } |
---|
545 | // for (j=ip+1; j<iq; j++) { |
---|
546 | // g=A[ip][j]; |
---|
547 | // h=A[j][iq]; |
---|
548 | // A[ip][j] = g-s*(h+g*tau); |
---|
549 | // A[j][iq] = h+s*(g-h*tau); |
---|
550 | // } |
---|
551 | // for (j=iq+1; j<=n; j++) { |
---|
552 | // g=A[ip][j]; |
---|
553 | // h=A[iq][j]; |
---|
554 | // A[ip][j] = g-s*(h+g*tau); |
---|
555 | // A[iq][j] = h+s*(g-h*tau); |
---|
556 | // } |
---|
557 | // for (j=1; j<=n; j++) { |
---|
558 | // g=V[j][ip]; |
---|
559 | // h=V[j][iq]; |
---|
560 | // V[j][ip] = g-s*(h+g*tau); |
---|
561 | // V[j][iq] = h+s*(g-h*tau); |
---|
562 | // } |
---|
563 | // *nRot=*nRot+1; |
---|
564 | // } //end ((i.gt.4)...else if |
---|
565 | // } // main iq loop |
---|
566 | // } // main ip loop |
---|
567 | // for (ip=1; ip<=n; ip++) { |
---|
568 | // B[ip] += Z[ip]; |
---|
569 | // D[ip]=B[ip]; |
---|
570 | // Z[ip]=0; |
---|
571 | // } |
---|
572 | // } //end of main i loop |
---|
573 | // printf("\n 50 iterations !\n"); |
---|
574 | // //vmfree(vmblock1); |
---|
575 | // delete[] Z; |
---|
576 | // delete[] B; |
---|
577 | // return; //too many iterations |
---|
578 | // } |
---|
579 | |
---|