[5673] | 1 | /* |
---|
| 2 | orxonox - the future of 3D-vertical-scrollers |
---|
[5661] | 3 | |
---|
[5673] | 4 | Copyright (C) 2004 orx |
---|
| 5 | |
---|
| 6 | This program is free software; you can redistribute it and/or modify |
---|
| 7 | it under the terms of the GNU General Public License as published by |
---|
| 8 | the Free Software Foundation; either version 2, or (at your option) |
---|
| 9 | any later version. |
---|
| 10 | |
---|
| 11 | ### File Specific: |
---|
| 12 | main-programmer: Benjamin Grauer |
---|
| 13 | co-programmer: Patrick Boenzli |
---|
| 14 | */ |
---|
| 15 | #include "matrix.h" |
---|
[9110] | 16 | #include <cmath> |
---|
[5673] | 17 | |
---|
[5696] | 18 | #ifdef DEBUG |
---|
| 19 | #include "debug.h" |
---|
| 20 | #else |
---|
[5661] | 21 | #include <stdio.h> |
---|
[5696] | 22 | #define PRINT(x) printf |
---|
| 23 | #endif |
---|
[5661] | 24 | |
---|
[5696] | 25 | /** |
---|
| 26 | * constructs a Matrix from all Parameters in a Row |
---|
| 27 | * @param m11 [0][0] |
---|
| 28 | * @param m12 [0][1] |
---|
| 29 | * @param m13 [0][2] |
---|
| 30 | * @param m21 [1][0] |
---|
| 31 | * @param m22 [1][1] |
---|
| 32 | * @param m23 [1][2] |
---|
| 33 | * @param m31 [2][0] |
---|
| 34 | * @param m32 [2][1] |
---|
| 35 | * @param m33 [2][2] |
---|
| 36 | */ |
---|
| 37 | Matrix::Matrix ( float m11, float m12, float m13, |
---|
| 38 | float m21, float m22, float m23, |
---|
| 39 | float m31, float m32, float m33 ) |
---|
| 40 | { |
---|
| 41 | this->m11 = m11; this->m12 = m12; this->m13 = m13; |
---|
| 42 | this->m21 = m21; this->m22 = m22; this->m23 = m23; |
---|
| 43 | this->m31 = m31; this->m32 = m32; this->m33 = m33; |
---|
| 44 | }; |
---|
[5662] | 45 | |
---|
[5696] | 46 | /** |
---|
| 47 | * creates a Matrix out of an Array of floats with size [3][3] |
---|
| 48 | * @param m the Matrix stored in an Array |
---|
| 49 | */ |
---|
| 50 | Matrix::Matrix(const float m[3][3]) |
---|
| 51 | { |
---|
| 52 | this->m11 = m[0][0]; this->m12 = m[0][1]; this->m13 = m[0][2]; |
---|
| 53 | this->m21 = m[1][0]; this->m22 = m[1][1]; this->m23 = m[1][2]; |
---|
| 54 | this->m31 = m[2][0]; this->m32 = m[2][1]; this->m33 = m[2][2]; |
---|
| 55 | }; |
---|
| 56 | |
---|
| 57 | |
---|
| 58 | /** |
---|
| 59 | * adds a Matrix to this one returning the result |
---|
| 60 | * @param m the Matrix to add to this one |
---|
| 61 | * @returns a copy of this Matrix added m |
---|
| 62 | */ |
---|
| 63 | Matrix Matrix::operator+ (const Matrix& m) const |
---|
| 64 | { |
---|
| 65 | return Matrix (this->m11 + m.m11, this->m12 + m.m12, this->m13 + m.m13, |
---|
| 66 | this->m21 + m.m21, this->m22 + m.m22, this->m23 + m.m23, |
---|
| 67 | this->m31 + m.m31, this->m32 + m.m32, this->m33 + m.m33); |
---|
| 68 | } |
---|
| 69 | |
---|
| 70 | /** |
---|
| 71 | * sustracts a Matrix from this one returning the result |
---|
| 72 | * @param m the Matrix to substract from this one |
---|
| 73 | * @returns a copy of this Matrix substracted m |
---|
| 74 | */ |
---|
| 75 | Matrix Matrix::operator- (const Matrix& m) const |
---|
| 76 | { |
---|
| 77 | return Matrix (this->m11 - m.m11, this->m12 - m.m12, this->m13 - m.m13, |
---|
| 78 | this->m21 - m.m21, this->m22 - m.m22, this->m23 - m.m23, |
---|
| 79 | this->m31 - m.m31, this->m32 - m.m32, this->m33 - m.m33); |
---|
| 80 | } |
---|
| 81 | |
---|
| 82 | /** |
---|
| 83 | * multiplies each value of a copu of this Matrix by k |
---|
| 84 | * @param k the multiplication factor |
---|
| 85 | * @returns a copy of this Matrix multiplied by k |
---|
| 86 | */ |
---|
| 87 | Matrix Matrix::operator* (float k) const |
---|
| 88 | { |
---|
| 89 | return Matrix(this->m11 * k, this->m12 * k, this->m13 * k, |
---|
| 90 | this->m21 * k, this->m22 * k, this->m23 * k, |
---|
| 91 | this->m31 * k, this->m32 * k, this->m33 * k); |
---|
| 92 | } |
---|
| 93 | |
---|
| 94 | /** |
---|
| 95 | * multiplies the Matrix by a Vector returning a Vector of the result |
---|
| 96 | * @param v the Vector the matrix will be multiplied with |
---|
| 97 | * @returns the result of the Multiplication |
---|
| 98 | */ |
---|
| 99 | Vector Matrix::operator* (const Vector& v) const |
---|
| 100 | { |
---|
| 101 | return Vector (this->m11*v.x + this->m12*v.y + this->m13*v.z, |
---|
| 102 | this->m21*v.x + this->m22*v.y + this->m23*v.z, |
---|
| 103 | this->m31*v.x + this->m32*v.y + this->m33*v.z ); |
---|
| 104 | } |
---|
| 105 | |
---|
| 106 | /** |
---|
| 107 | * @returns a Transposed copy of this Matrix |
---|
| 108 | */ |
---|
| 109 | Matrix Matrix::getTransposed() const |
---|
| 110 | { |
---|
| 111 | return Matrix( this->m11, this->m21, this->m31, |
---|
| 112 | this->m12, this->m22, this->m32, |
---|
| 113 | this->m13, this->m23, this->m33); |
---|
| 114 | } |
---|
| 115 | |
---|
| 116 | /** |
---|
| 117 | * converts the Matrix into 3 Vector, and returns them in m1, m2 and m3 |
---|
| 118 | * @param m1 the first Column of the Matrix as a Vector |
---|
| 119 | * @param m2 the second Column of the Matrix as a Vector |
---|
| 120 | * @param m3 the third Column of the Matrix as a Vector |
---|
| 121 | */ |
---|
| 122 | void Matrix::toVectors(Vector& m1, Vector& m2, Vector& m3) const |
---|
| 123 | { |
---|
| 124 | m1 = Vector(this->m11, this->m21, this->m31); |
---|
| 125 | m2 = Vector(this->m12, this->m22, this->m32); |
---|
| 126 | m3 = Vector(this->m13, this->m23, this->m33); |
---|
| 127 | } |
---|
| 128 | |
---|
| 129 | /** |
---|
| 130 | * @returns the Determinant of this Matrix |
---|
| 131 | */ |
---|
| 132 | float Matrix::getDeterminant() const |
---|
| 133 | { |
---|
| 134 | return this->m11*(this->m22*this->m33 - this->m23*this->m32) - |
---|
| 135 | this->m12*(this->m21*this->m33 - this->m23*this->m31) + |
---|
| 136 | this->m13*(this->m21*this->m32 - this->m22*this->m31); |
---|
| 137 | } |
---|
| 138 | |
---|
| 139 | /** |
---|
| 140 | * calculates an returns the EingenValues of this Matrix. |
---|
| 141 | * @param eigneValues the Values calculated in a Vector |
---|
| 142 | * @returns the Count of found eigenValues |
---|
| 143 | * |
---|
| 144 | * This Function calculates the EigenValues of a 3x3-Matrix explicitly. |
---|
| 145 | * the Returned value eigenValues has the Values stored in Vector form |
---|
| 146 | * The Vector will be filled upside down, meaning if the count of found |
---|
| 147 | * eingenValues is 1 the only value will be located in eigneValues.x |
---|
| 148 | */ |
---|
[5675] | 149 | int Matrix::getEigenValues(Vector& eigenValues) const |
---|
[5662] | 150 | { |
---|
[5675] | 151 | int retVal = -1; |
---|
[5661] | 152 | float a = 0; |
---|
| 153 | float b = 0; |
---|
| 154 | |
---|
| 155 | float c[3]; |
---|
| 156 | |
---|
| 157 | // c[0] is the determinante of mat |
---|
[5662] | 158 | c[0] = this->m11 * this->m22 * this->m33 + |
---|
| 159 | 2* this->m12 * this->m13 * this->m23 - |
---|
| 160 | this->m11 * this->m23 * this->m23 - |
---|
| 161 | this->m22 * this->m13 * this->m13 - |
---|
| 162 | this->m33 * this->m12 * this->m12; |
---|
[5661] | 163 | |
---|
| 164 | // c[1] is the trace of a |
---|
[5662] | 165 | c[1] = this->m11 * this->m22 - |
---|
| 166 | this->m12 * this->m12 + |
---|
| 167 | this->m11 * this->m33 - |
---|
| 168 | this->m13 * this->m13 + |
---|
| 169 | this->m22 * this->m33 - |
---|
| 170 | this->m23 * this->m23; |
---|
[5661] | 171 | |
---|
| 172 | // c[2] is the sum of the diagonal elements |
---|
[5662] | 173 | c[2] = this->m11 + |
---|
| 174 | this->m22 + |
---|
| 175 | this->m33; |
---|
[5661] | 176 | |
---|
| 177 | |
---|
| 178 | // Computing the roots: |
---|
| 179 | a = (3.0*c[1] - c[2]*c[2]) / 3.0; |
---|
| 180 | b = (-2.0*c[2]*c[2]*c[2] + 9.0*c[1]*c[2] - 27.0*c[0]) / 27.0; |
---|
| 181 | |
---|
| 182 | float Q = b*b/4.0 + a*a*a/27.0; |
---|
| 183 | |
---|
[5662] | 184 | // 3 distinct Roots |
---|
[5661] | 185 | if (Q < 0) |
---|
| 186 | { |
---|
| 187 | float psi = atan2(sqrt(-Q), -b/2.0); |
---|
| 188 | float p = sqrt((b/2.0)*(b/2.0) - Q); |
---|
| 189 | |
---|
[5675] | 190 | eigenValues.x = c[2]/3.0 + 2 * pow(p, 1/3.0) * cos(psi/3.0); |
---|
| 191 | eigenValues.y = c[2]/3.0 - pow(p, 1/3.0) * (cos(psi/3.0) |
---|
[5661] | 192 | + sqrt(3.0) * sin(psi/3.0)); |
---|
[5675] | 193 | eigenValues.z = c[2]/3.0 - pow(p, 1/3.0) * (cos(psi/3.0) |
---|
[5661] | 194 | - sqrt(3.0) * sin(psi/3.0)); |
---|
[5675] | 195 | retVal = 3; |
---|
[5661] | 196 | } |
---|
[5662] | 197 | // 2 Distinct Roots |
---|
[5661] | 198 | else if (Q == 0) |
---|
| 199 | { |
---|
[5675] | 200 | eigenValues.x = eigenValues.y = c[2]/3.0 + pow(b/2.0, 1.0/3.0); |
---|
| 201 | eigenValues.z = c[2]/3.0 + 2* pow(b/2.0, 1.0/3.0); |
---|
| 202 | retVal = 2; |
---|
[5661] | 203 | } |
---|
[5662] | 204 | // 1 Root (not calculating anything.) |
---|
[5661] | 205 | else if (Q > 0) |
---|
| 206 | { |
---|
[5675] | 207 | eigenValues.x = eigenValues.y = eigenValues.z = 1; |
---|
| 208 | retVal = 1; |
---|
[5661] | 209 | } |
---|
[5675] | 210 | return retVal; |
---|
[5665] | 211 | } |
---|
[5661] | 212 | |
---|
[5696] | 213 | /** |
---|
| 214 | * calculates and returns the EigenVectors of this function as Vectors. |
---|
| 215 | * @param eigVc1 the first eigenVector will be stored here. |
---|
| 216 | * @param eigVc2 the second eigenVector will be stored here. |
---|
| 217 | * @param eigVc3 the third eigenVector will be stored here. |
---|
| 218 | */ |
---|
[5675] | 219 | void Matrix::getEigenVectors(Vector& eigVc1, Vector& eigVc2, Vector& eigVc3) const |
---|
[5665] | 220 | { |
---|
[5675] | 221 | Vector eigenValues; |
---|
| 222 | int eigenValuesCount = this->getEigenValues(eigenValues); |
---|
[5665] | 223 | |
---|
[5677] | 224 | if (eigenValuesCount == 2 || eigenValuesCount == 3) |
---|
| 225 | { |
---|
| 226 | /* eigenvec creation */ |
---|
| 227 | eigVc1.x = -1/this->m13*(this->m33 - eigenValues.x) + |
---|
| 228 | (this->m32*(-this->m31*this->m32 + this->m12*this->m33 - this->m12*eigenValues.x)) / |
---|
| 229 | this->m13*(-this->m13*this->m22 - this->m12*this->m23 + this->m13*eigenValues.x); |
---|
[5668] | 230 | |
---|
[5677] | 231 | eigVc1.y = -( -this->m13*this->m23 + this->m12*this->m33 - this->m12*eigenValues.x) / |
---|
| 232 | (-this->m31*this->m22 + this->m12*this->m23 + this->m13*eigenValues.x); |
---|
[5662] | 233 | |
---|
[5677] | 234 | eigVc1.z = 1.0f; |
---|
[5664] | 235 | |
---|
[5677] | 236 | eigVc2.x = -1/this->m13*(this->m33 - eigenValues.y) + |
---|
| 237 | (this->m32*(-this->m31*this->m32 + this->m12*this->m33 - this->m12*eigenValues.y)) / |
---|
| 238 | this->m13*(-this->m13*this->m22 - this->m12*this->m23 + this->m13*eigenValues.y); |
---|
[5664] | 239 | |
---|
[5677] | 240 | eigVc2.y = -( -this->m13*this->m23 + this->m12*this->m33 - this->m12*eigenValues.y) / |
---|
| 241 | (-this->m31*this->m22 + this->m12*this->m23 + this->m13*eigenValues.y); |
---|
[5664] | 242 | |
---|
[5677] | 243 | eigVc2.z = 1.0f; |
---|
[5675] | 244 | |
---|
[5677] | 245 | eigVc3 = eigVc1.cross(eigVc2); |
---|
[7711] | 246 | |
---|
| 247 | eigVc2 = eigVc3.cross(eigVc1); |
---|
[5677] | 248 | } |
---|
| 249 | else if (eigenValuesCount == 1) |
---|
| 250 | { |
---|
| 251 | eigVc1 = Vector(1,0,0); |
---|
| 252 | eigVc2 = Vector(0,1,0); |
---|
| 253 | eigVc3 = Vector(0,0,1); |
---|
| 254 | } |
---|
[5675] | 255 | eigVc1.normalize(); |
---|
| 256 | eigVc2.normalize(); |
---|
| 257 | eigVc3.normalize(); |
---|
[7711] | 258 | |
---|
| 259 | if (!(eigVc1.cross(eigVc3) == eigVc2)) |
---|
| 260 | { |
---|
| 261 | eigVc3.cross(eigVc1); |
---|
| 262 | // eigVc2.debug(); |
---|
| 263 | } |
---|
| 264 | /* printf("ok\n")*/; |
---|
[5662] | 265 | } |
---|
[5661] | 266 | |
---|
[5696] | 267 | /** |
---|
| 268 | * prints out some nice debug information |
---|
| 269 | */ |
---|
[5662] | 270 | void Matrix::debug() const |
---|
| 271 | { |
---|
[5668] | 272 | printf("| %f | %f | %f |\n", this->m11, this->m12, this->m13 ); |
---|
| 273 | printf("| %f | %f | %f |\n", this->m21, this->m22, this->m23 ); |
---|
| 274 | printf("| %f | %f | %f |\n", this->m31, this->m32, this->m33 ); |
---|
[5661] | 275 | |
---|
| 276 | } |
---|
[5662] | 277 | |
---|