1 | /* |
---|
2 | orxonox - the future of 3D-vertical-scrollers |
---|
3 | |
---|
4 | Copyright (C) 2004 orx |
---|
5 | |
---|
6 | This program is free software; you can redistribute it and/or modify |
---|
7 | it under the terms of the GNU General Public License as published by |
---|
8 | the Free Software Foundation; either version 2, or (at your option) |
---|
9 | any later version. |
---|
10 | |
---|
11 | ### File Specific: |
---|
12 | main-programmer: Christian Meyer |
---|
13 | co-programmer: Patrick Boenzli : Vector::scale() |
---|
14 | Vector::abs() |
---|
15 | |
---|
16 | Quaternion code borrowed from an Gamasutra article by Nick Bobick and Ken Shoemake |
---|
17 | |
---|
18 | 2005-06-02: Benjamin Grauer: speed up, and new Functionality to Vector (mostly inline now) |
---|
19 | */ |
---|
20 | |
---|
21 | #define DEBUG_SPECIAL_MODULE DEBUG_MODULE_MATH |
---|
22 | |
---|
23 | #include "quaternion.h" |
---|
24 | #ifdef DEBUG |
---|
25 | #include "debug.h" |
---|
26 | #else |
---|
27 | #include <stdio.h> |
---|
28 | #define PRINT(x) printf |
---|
29 | #endif |
---|
30 | |
---|
31 | using namespace std; |
---|
32 | |
---|
33 | ///////////////// |
---|
34 | /* QUATERNIONS */ |
---|
35 | ///////////////// |
---|
36 | /** |
---|
37 | * @brief calculates a lookAt rotation |
---|
38 | * @param dir: the direction you want to look |
---|
39 | * @param up: specify what direction up should be |
---|
40 | * |
---|
41 | * Mathematically this determines the rotation a (0,0,1)-Vector has to undergo to point |
---|
42 | * the same way as dir. If you want to use this with cameras, you'll have to reverse the |
---|
43 | * dir Vector (Vector(0,0,0) - your viewing direction) or you'll point the wrong way. You |
---|
44 | * can use this for meshes as well (then you do not have to reverse the vector), but keep |
---|
45 | * in mind that if you do that, the model's front has to point in +z direction, and left |
---|
46 | * and right should be -x or +x respectively or the mesh wont rotate correctly. |
---|
47 | * |
---|
48 | * @TODO !!! OPTIMIZE THIS !!! |
---|
49 | */ |
---|
50 | Quaternion::Quaternion (const Vector& dir, const Vector& up) |
---|
51 | { |
---|
52 | Vector z = dir.getNormalized(); |
---|
53 | Vector x = up.cross(z).getNormalized(); |
---|
54 | Vector y = z.cross(x); |
---|
55 | |
---|
56 | float m[4][4]; |
---|
57 | m[0][0] = x.x; |
---|
58 | m[0][1] = x.y; |
---|
59 | m[0][2] = x.z; |
---|
60 | m[0][3] = 0; |
---|
61 | m[1][0] = y.x; |
---|
62 | m[1][1] = y.y; |
---|
63 | m[1][2] = y.z; |
---|
64 | m[1][3] = 0; |
---|
65 | m[2][0] = z.x; |
---|
66 | m[2][1] = z.y; |
---|
67 | m[2][2] = z.z; |
---|
68 | m[2][3] = 0; |
---|
69 | m[3][0] = 0; |
---|
70 | m[3][1] = 0; |
---|
71 | m[3][2] = 0; |
---|
72 | m[3][3] = 1; |
---|
73 | |
---|
74 | *this = Quaternion (m); |
---|
75 | } |
---|
76 | |
---|
77 | /** |
---|
78 | * @brief calculates a rotation from euler angles |
---|
79 | * @param roll: the roll in radians |
---|
80 | * @param pitch: the pitch in radians |
---|
81 | * @param yaw: the yaw in radians |
---|
82 | */ |
---|
83 | Quaternion::Quaternion (float roll, float pitch, float yaw) |
---|
84 | { |
---|
85 | float cr, cp, cy, sr, sp, sy, cpcy, spsy; |
---|
86 | |
---|
87 | // calculate trig identities |
---|
88 | cr = cos(roll/2); |
---|
89 | cp = cos(pitch/2); |
---|
90 | cy = cos(yaw/2); |
---|
91 | |
---|
92 | sr = sin(roll/2); |
---|
93 | sp = sin(pitch/2); |
---|
94 | sy = sin(yaw/2); |
---|
95 | |
---|
96 | cpcy = cp * cy; |
---|
97 | spsy = sp * sy; |
---|
98 | |
---|
99 | w = cr * cpcy + sr * spsy; |
---|
100 | v.x = sr * cpcy - cr * spsy; |
---|
101 | v.y = cr * sp * cy + sr * cp * sy; |
---|
102 | v.z = cr * cp * sy - sr * sp * cy; |
---|
103 | } |
---|
104 | |
---|
105 | /** |
---|
106 | * @brief convert the Quaternion to a 4x4 rotational glMatrix |
---|
107 | * @param m: a buffer to store the Matrix in |
---|
108 | */ |
---|
109 | void Quaternion::matrix (float m[4][4]) const |
---|
110 | { |
---|
111 | float wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2; |
---|
112 | |
---|
113 | // calculate coefficients |
---|
114 | x2 = v.x + v.x; |
---|
115 | y2 = v.y + v.y; |
---|
116 | z2 = v.z + v.z; |
---|
117 | xx = v.x * x2; xy = v.x * y2; xz = v.x * z2; |
---|
118 | yy = v.y * y2; yz = v.y * z2; zz = v.z * z2; |
---|
119 | wx = w * x2; wy = w * y2; wz = w * z2; |
---|
120 | |
---|
121 | m[0][0] = 1.0 - (yy + zz); m[1][0] = xy - wz; |
---|
122 | m[2][0] = xz + wy; m[3][0] = 0.0; |
---|
123 | |
---|
124 | m[0][1] = xy + wz; m[1][1] = 1.0 - (xx + zz); |
---|
125 | m[2][1] = yz - wx; m[3][1] = 0.0; |
---|
126 | |
---|
127 | m[0][2] = xz - wy; m[1][2] = yz + wx; |
---|
128 | m[2][2] = 1.0 - (xx + yy); m[3][2] = 0.0; |
---|
129 | |
---|
130 | m[0][3] = 0; m[1][3] = 0; |
---|
131 | m[2][3] = 0; m[3][3] = 1; |
---|
132 | } |
---|
133 | |
---|
134 | |
---|
135 | |
---|
136 | /** |
---|
137 | * @brief Slerps this QUaternion performs a smooth move. |
---|
138 | * @param toQuat to this Quaternion |
---|
139 | * @param t \% inth the the direction[0..1] |
---|
140 | */ |
---|
141 | void Quaternion::slerpTo(const Quaternion& toQuat, float t) |
---|
142 | { |
---|
143 | float tol[4]; |
---|
144 | double omega, cosom, sinom, scale0, scale1; |
---|
145 | // float DELTA = 0.2; |
---|
146 | |
---|
147 | cosom = this->v.x * toQuat.v.x + this->v.y * toQuat.v.y + this->v.z * toQuat.v.z + this->w * toQuat.w; |
---|
148 | |
---|
149 | if( cosom < 0.0 ) |
---|
150 | { |
---|
151 | cosom = -cosom; |
---|
152 | tol[0] = -toQuat.v.x; |
---|
153 | tol[1] = -toQuat.v.y; |
---|
154 | tol[2] = -toQuat.v.z; |
---|
155 | tol[3] = -toQuat.w; |
---|
156 | } |
---|
157 | else |
---|
158 | { |
---|
159 | tol[0] = toQuat.v.x; |
---|
160 | tol[1] = toQuat.v.y; |
---|
161 | tol[2] = toQuat.v.z; |
---|
162 | tol[3] = toQuat.w; |
---|
163 | } |
---|
164 | |
---|
165 | omega = acos(cosom); |
---|
166 | sinom = sin(omega); |
---|
167 | scale0 = sin((1.0 - t) * omega) / sinom; |
---|
168 | scale1 = sin(t * omega) / sinom; |
---|
169 | this->v = Vector(scale0 * this->v.x + scale1 * tol[0], |
---|
170 | scale0 * this->v.y + scale1 * tol[1], |
---|
171 | scale0 * this->v.z + scale1 * tol[2]); |
---|
172 | this->w = scale0 * this->w + scale1 * tol[3]; |
---|
173 | } |
---|
174 | |
---|
175 | |
---|
176 | /** |
---|
177 | * @brief performs a smooth move. |
---|
178 | * @param from where |
---|
179 | * @param to where |
---|
180 | * @param t the time this transformation should take value [0..1] |
---|
181 | * @returns the Result of the smooth move |
---|
182 | */ |
---|
183 | Quaternion Quaternion::quatSlerp(const Quaternion& from, const Quaternion& to, float t) |
---|
184 | { |
---|
185 | float tol[4]; |
---|
186 | double omega, cosom, sinom, scale0, scale1; |
---|
187 | // float DELTA = 0.2; |
---|
188 | |
---|
189 | cosom = from.v.x * to.v.x + from.v.y * to.v.y + from.v.z * to.v.z + from.w * to.w; |
---|
190 | |
---|
191 | if( cosom < 0.0 ) |
---|
192 | { |
---|
193 | cosom = -cosom; |
---|
194 | tol[0] = -to.v.x; |
---|
195 | tol[1] = -to.v.y; |
---|
196 | tol[2] = -to.v.z; |
---|
197 | tol[3] = -to.w; |
---|
198 | } |
---|
199 | else |
---|
200 | { |
---|
201 | tol[0] = to.v.x; |
---|
202 | tol[1] = to.v.y; |
---|
203 | tol[2] = to.v.z; |
---|
204 | tol[3] = to.w; |
---|
205 | } |
---|
206 | |
---|
207 | omega = acos(cosom); |
---|
208 | sinom = sin(omega); |
---|
209 | scale0 = sin((1.0 - t) * omega) / sinom; |
---|
210 | scale1 = sin(t * omega) / sinom; |
---|
211 | return Quaternion(Vector(scale0 * from.v.x + scale1 * tol[0], |
---|
212 | scale0 * from.v.y + scale1 * tol[1], |
---|
213 | scale0 * from.v.z + scale1 * tol[2]), |
---|
214 | scale0 * from.w + scale1 * tol[3]); |
---|
215 | } |
---|
216 | |
---|
217 | /** |
---|
218 | * @returns the Heading |
---|
219 | */ |
---|
220 | float Quaternion::getHeading() const |
---|
221 | { |
---|
222 | float pole = this->v.x*this->v.y + this->v.z*this->w; |
---|
223 | if (fabsf(pole) != 0.5) |
---|
224 | return atan2(2.0* (v.y*w - v.x*v.z), 1 - 2.0*(v.y*v.y - v.z*v.z)); |
---|
225 | else if (pole == .5) // North Pole |
---|
226 | return 2.0 * atan2(v.x, w); |
---|
227 | else // South Pole |
---|
228 | return -2.0 * atan2(v.x, w); |
---|
229 | } |
---|
230 | |
---|
231 | /** |
---|
232 | * @returns the Heading-Quaternion |
---|
233 | */ |
---|
234 | Quaternion Quaternion::getHeadingQuat() const |
---|
235 | { |
---|
236 | return Quaternion(this->getHeading(), Vector(0,1,0)); |
---|
237 | } |
---|
238 | |
---|
239 | /** |
---|
240 | * @returns the Attitude |
---|
241 | */ |
---|
242 | float Quaternion::getAttitude() const |
---|
243 | { |
---|
244 | return asin(2.0 * (v.x*v.y + v.z*w)); |
---|
245 | } |
---|
246 | |
---|
247 | /** |
---|
248 | * @returns the Attitude-Quaternion |
---|
249 | */ |
---|
250 | Quaternion Quaternion::getAttitudeQuat() const |
---|
251 | { |
---|
252 | return Quaternion(this->getAttitude(), Vector(0,0,1)); |
---|
253 | } |
---|
254 | |
---|
255 | |
---|
256 | /** |
---|
257 | * @returns the Bank |
---|
258 | */ |
---|
259 | float Quaternion::getBank() const |
---|
260 | { |
---|
261 | if (fabsf(this->v.x*this->v.y + this->v.z*this->w) != 0.5) |
---|
262 | return atan2(2.0*(v.x*w-v.y*v.z) , 1 - 2.0*(v.x*v.x - v.z*v.z)); |
---|
263 | else |
---|
264 | return 0.0f; |
---|
265 | } |
---|
266 | |
---|
267 | /** |
---|
268 | * @returns the Bank-Quaternion |
---|
269 | */ |
---|
270 | Quaternion Quaternion::getBankQuat() const |
---|
271 | { |
---|
272 | return Quaternion(this->getBank(), Vector(1,0,0)); |
---|
273 | } |
---|
274 | |
---|
275 | |
---|
276 | |
---|
277 | /** |
---|
278 | * @brief convert a rotational 4x4 glMatrix into a Quaternion |
---|
279 | * @param m: a 4x4 matrix in glMatrix order |
---|
280 | */ |
---|
281 | Quaternion::Quaternion (float m[4][4]) |
---|
282 | { |
---|
283 | |
---|
284 | float tr, s, q[4]; |
---|
285 | int i, j, k; |
---|
286 | |
---|
287 | int nxt[3] = {1, 2, 0}; |
---|
288 | |
---|
289 | tr = m[0][0] + m[1][1] + m[2][2]; |
---|
290 | |
---|
291 | // check the diagonal |
---|
292 | if (tr > 0.0) |
---|
293 | { |
---|
294 | s = sqrt (tr + 1.0); |
---|
295 | w = s / 2.0; |
---|
296 | s = 0.5 / s; |
---|
297 | v.x = (m[1][2] - m[2][1]) * s; |
---|
298 | v.y = (m[2][0] - m[0][2]) * s; |
---|
299 | v.z = (m[0][1] - m[1][0]) * s; |
---|
300 | } |
---|
301 | else |
---|
302 | { |
---|
303 | // diagonal is negative |
---|
304 | i = 0; |
---|
305 | if (m[1][1] > m[0][0]) i = 1; |
---|
306 | if (m[2][2] > m[i][i]) i = 2; |
---|
307 | j = nxt[i]; |
---|
308 | k = nxt[j]; |
---|
309 | |
---|
310 | s = sqrt ((m[i][i] - (m[j][j] + m[k][k])) + 1.0); |
---|
311 | |
---|
312 | q[i] = s * 0.5; |
---|
313 | |
---|
314 | if (s != 0.0) s = 0.5 / s; |
---|
315 | |
---|
316 | q[3] = (m[j][k] - m[k][j]) * s; |
---|
317 | q[j] = (m[i][j] + m[j][i]) * s; |
---|
318 | q[k] = (m[i][k] + m[k][i]) * s; |
---|
319 | |
---|
320 | v.x = q[0]; |
---|
321 | v.y = q[1]; |
---|
322 | v.z = q[2]; |
---|
323 | w = q[3]; |
---|
324 | } |
---|
325 | } |
---|
326 | |
---|
327 | |
---|
328 | /** |
---|
329 | * Creates a quaternion from a 3x3 rotation matrix. |
---|
330 | * @param mat The 3x3 source rotation matrix. |
---|
331 | * @return The equivalent 4 float quaternion. |
---|
332 | */ |
---|
333 | Quaternion::Quaternion(float mat[3][3]) |
---|
334 | { |
---|
335 | int NXT[] = {1, 2, 0}; |
---|
336 | float q[4]; |
---|
337 | |
---|
338 | // check the diagonal |
---|
339 | float tr = mat[0][0] + mat[1][1] + mat[2][2]; |
---|
340 | if( tr > 0.0f) { |
---|
341 | float s = (float)sqrtf(tr + 1.0f); |
---|
342 | this->w = s * 0.5f; |
---|
343 | s = 0.5f / s; |
---|
344 | this->v.x = (mat[1][2] - mat[2][1]) * s; |
---|
345 | this->v.y = (mat[2][0] - mat[0][2]) * s; |
---|
346 | this->v.z = (mat[0][1] - mat[1][0]) * s; |
---|
347 | } |
---|
348 | else |
---|
349 | { |
---|
350 | // diagonal is negative |
---|
351 | // get biggest diagonal element |
---|
352 | int i = 0; |
---|
353 | if (mat[1][1] > mat[0][0]) i = 1; |
---|
354 | if (mat[2][2] > mat[i][i]) i = 2; |
---|
355 | //setup index sequence |
---|
356 | int j = NXT[i]; |
---|
357 | int k = NXT[j]; |
---|
358 | |
---|
359 | float s = (float)sqrtf((mat[i][i] - (mat[j][j] + mat[k][k])) + 1.0f); |
---|
360 | |
---|
361 | q[i] = s * 0.5f; |
---|
362 | |
---|
363 | if (s != 0.0f) s = 0.5f / s; |
---|
364 | |
---|
365 | q[j] = (mat[i][j] + mat[j][i]) * s; |
---|
366 | q[k] = (mat[i][k] + mat[k][i]) * s; |
---|
367 | q[3] = (mat[j][k] - mat[k][j]) * s; |
---|
368 | |
---|
369 | this->v.x = q[0]; |
---|
370 | this->v.y = q[1]; |
---|
371 | this->v.z = q[2]; |
---|
372 | this->w = q[3]; |
---|
373 | } |
---|
374 | } |
---|
375 | |
---|
376 | /** |
---|
377 | * @brief outputs some nice formated debug information about this quaternion |
---|
378 | */ |
---|
379 | void Quaternion::debug() const |
---|
380 | { |
---|
381 | PRINT(0)("real a=%f; imag: x=%f y=%f z=%f\n", w, v.x, v.y, v.z); |
---|
382 | } |
---|
383 | |
---|
384 | /** |
---|
385 | * @brief another better Quaternion Debug Function. |
---|
386 | */ |
---|
387 | void Quaternion::debug2() const |
---|
388 | { |
---|
389 | Vector axis = this->getSpacialAxis(); |
---|
390 | PRINT(0)("angle = %f, axis: ax=%f, ay=%f, az=%f\n", this->getSpacialAxisAngle(), axis.x, axis.y, axis.z ); |
---|
391 | } |
---|
392 | |
---|
393 | |
---|
394 | |
---|
395 | |
---|
396 | |
---|
397 | |
---|